
61A LECTURE 9 –

LISTS, DICTIONARIES,

OBJECTS, MUTABLE DATA
Steven Tang and Eric Tzeng

July 9, 2013

Announcements

• Hw6 is released, due next Monday

• Hog Contest!

• Turn in a strategy that will be played against other students’ strategies

• Can work in partnership (optional)

• Win eternal 61A glory

• See details up on the course web page!

• Trends project

• Everything you need to complete the project will be covered by the end of

this lecture

• Recommended you find a partner

Midterm

• Midterm is Thursday, 7pm

• Info page up:

http://inst.eecs.berkeley.edu/~cs61a/su13/exams/midterm1.html

• Staff cheat sheet is up on the mt1 page

• Two exam rooms:

• 2050 VLSB for logins cs61a-aa through cs61a-hz

• 10 Evans for everyone else

• Lists are on the midterm.

• Need to know how to create one, how to select elements, and how to

use list comprehensions

• Mutation and assignment of lists are NOT covered

• Objects, dictionaries, and mutable data will NOT be covered on

midterm 1

http://inst.eecs.berkeley.edu/~cs61a/su13/exams/midterm1.html

Sequence arithmetic

Some Python sequences support arithmetic

operations
>>> city = 'Berkeley'
>>> city + ', CA'
'Berkeley, CA'

>>> "Don't repeat yourself! " * 2
"Don't repeat yourself! Don’t repeat yourself! "

>>> (1, 2, 3) * 3
(1, 2, 3, 1, 2, 3, 1, 2, 3)

>>> (1, 2, 3) + (4, 5, 6, 7)
(1, 2, 3, 4, 5, 6, 7)

Concatenate

Repeat twice

Sequences as conventional interfaces

We can apply a function to every element in a sequence

This is called mapping the function over the sequence

We can extract elements that satisfy a given condition

We can compute the sum of all elements

Both map and filter produce an iterable, not a sequence

>>> fibs = tuple(map(fib, range(8)))

>>> fibs

(0, 1, 1, 2, 3, 5, 8, 13)

>>> even_fibs = tuple(filter(is_even, fibs))

>>> even_fibs

(0, 2, 8)

>>> sum(even_fibs)

10

Iterables
Iterables provide access to some elements in order but do not
provide length or element selection

Python-specific construct; more general than a sequence

Many built-in functions take iterables as argument

For statements also operate on iterable values.

tuple Construct a tuple containing the elements

map Construct a map that results from applying the given function
to each element

filter Construct a filter with elements that satisfy the given condition

sum Return the sum of the elements

min Return the minimum of the elements

max Return the maximum of the elements

Sequences and Iterables
• Iterables work in many built-in functions

• for element in iterable_object: ...

• However, iterables do not necessarily have element

selection or length capabilities

• x = map(lambda num: num * 3, (5, 6, 7, 8))

• len(x) is an error

• x[2] is an error

• Sequences are iterables. Thus, also work in many built-in

functions

• for element in (1, 2, 3, 4, 5): ...

• x = tuple(map(lambda num: num * 3, (5, 6, 7, 8)))

• len(x)

• x[2]

Generator expressions

(<map exp> for <name> in <iter exp> if <filter exp>)

One large expression that combines mapping and filtering to
produce an iterable

No-filter version: (<map exp> for <name> in <iter exp>)

• Evaluates to an iterable.

• <iter exp> is evaluated when the generator expression is
evaluated.

• Remaining expressions are evaluated when elements are
accessed.

Precise evaluation rule introduced in Chapter 4.

Reducing a Sequence
Reduce is a higher-order generalization of max, min, and sum.

>>> from operator import mul
>>> from functools import reduce
>>> reduce(mul, (1, 2, 3, 4, 5), 1)
120

Like accumulate from Homework 2, but with iterables

First argument:
A two-argument

function

Second argument:
an iterable object

Optional initial
value as third

argument

def accumulate(combiner, start, n, term):

return reduce(combiner,

map(term, range(1, n + 1)),

start)

Create an iterable of fixed-length sequences

More Functions on Iterables (Bonus)

>>> a, b = (1, 2, 3), (4, 5, 6, 7)
>>> for x, y in zip(a, b):
... print(x + y)
...
5
7
9

The itertools module contains many useful functions for
working with iterables

>>> from itertools import product, combinations
>>> tuple(product(a, b[:2]))
((1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5))
>>> tuple(combinations(a, 2))
((1, 2), (1, 3), (2, 3))

Produces tuples with one element
from each argument, up to length

of smallest argument

Lists
>>> a = [3, 1, 2]
>>> a
[3, 1, 2]
>>> len(a)
3
>>> a[1]
1
>>> c, d = a, a[:]
>>> a, c, d
([3, 1, 2], [3, 1, 2], [3, 1, 2])
>>> c[0] = 4
>>> a, c, d
([4, 1, 2], [4, 1, 2], [3, 1, 2])
>>> d[0] = 5
>>> a, c, d
([4, 1, 2], [4, 1, 2], [5, 1, 2])
>>> a[1:2] = [7, 8, 9]
>>> a, c, d
([4, 7, 8, 9, 2], [4, 7, 8, 9, 2], [5, 1, 2])

Create a list using square brackets

Lists are sequences

Bind another name to a list or a
slice of a list

Modify contents of a list

wut()?

An object is a representation of information

All data in Python are objects

But an object is not just data; it also bundles behavior

together with that data

An object’s type determines what data it stores and what

behavior it provides

Objects

>>> type(4)
<class 'int'>

>>> type([4])
<class 'list'>

All objects have attributes

We use dot notation to access an attribute

An attribute may be a method, which is a type of function, so
it may be called

Notice that we did not have to pass in the list as an
argument; the method already knows the object on which it
is operating

Object Attributes

>>> (4).real, (4).imag
(4, 0)

>>> [1, 2, 1, 4].count(1)
2

Calling the constructor of a built-in type creates a new
object of that type

Objects can be distinct even if they hold the same data

The is and not is operators check if two objects are the
same

Compare to ==, which checks for equality, not sameness

Creating and Distinguishing Objects

>>> [1, 2, 1, 4] is [1, 2, 1, 4]
False

>>> [1, 2, 1, 4] == [1, 2, 1, 4]
True

Assignment does not create a new object

In our environment diagrams, assignment copies the arrow

The “arrow” is called a pointer or reference

Multiple names can point to or reference the same object

Objects and Assignment

But slicing does!

Break

An object may be immutable, which means that its data
cannot be changed

Most of the types we have seen so far are immutable

• ints, floats, booleans, tuples, ranges, strings

For an immutable type, it doesn’t matter whether or not two
equal objects are the same

Neither can change, so one is as good as the other

Immutable Types

>>> e, f = 300, 300
>>> e is f
True
>>> e = 300
>>> f = 300
>>> e is f
False

Mutable objects, on the other hand, can change, and any change affects
all references to that object

So we need to be careful with mutation

Mutable Types

Lists have many useful methods

• append: add an element to the end of a list

• extend: add all elements from an iterable to the end of the list

• count: count the number of occurrences of a value

• pop: remove an element from the end of a list

• sort: sort the elements of a list

These methods (except count) mutate the list

Compare to sorted(x), which returns a new list

Call dir(list) to see a full list of attributes

List Methods

We can construct a list using a list comprehension, which is

similar to a generator expression

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

• Evaluates to a list.

• <iter exp> is evaluated once.

• <name> is bound to an element, and <filter exp> is
evaluated. If it evaluates to a true value, then <map exp>
is evaluated, and its value is added to the resulting list.

>>> [3 / x for x in range(4) if x != 0]
[3.0, 1.5, 1.0]

Sequences map integers to values

What if we wanted arbitrary values in the domain?

We use a dictionary

Dictionaries

>>> a = [3, 1, 2]

'eric' -> 'blue'
'steven' -> 'red'
'mark' -> 'green'
'albert' -> 'gold'

>>> colors = {'eric': 'blue',
'steven': 'red',
'mark': 'green',
'albert': 'gold'}

>>> colors['eric']
'blue'

-3 -> 3 0 -> 3
-2 -> 1 1 -> 1
-1 -> 2 2 -> 2

Dictionaries are not sequences, but they do have a length

and are iterable

• Iterating provides each of the keys in some arbitrary order

Dictionaries are mutable

There are dictionary comprehensions, which are similar to

list comprehensions

Dictionary Features

>>> for person in colors:
... print colors[person]
...
prints colors in unspecified order

>>> colors['eric'] = 'fuchsia'

>>> {p: colors[p] + 'ish' for p in colors}
{'steven': 'redish', 'mark': 'greenish',
'albert': 'goldish', 'eric': 'blueish'}

Dictionaries are unordered collections of key-value pairs.

Dictionary keys do have two restrictions:

• A key of a dictionary cannot be an object of a mutable built-in type.

• Two keys cannot be equal. There can be at most one value for a

given key.

This first restriction is tied to Python's underlying

implementation of dictionaries.

The second restriction is an intentional consequence of the

dictionary abstraction.

Limitations on Dictionaries

A Function with Evolving Behavior

>>> withdraw(25)
75

>>> withdraw(25)
50

>>> withdraw(60)
'Insufficient funds'

>>> withdraw(15)
35

>>> withdraw = make_withdraw(100)

Let's model a bank account that has a balance of $100

Argument:
amount to withdraw

Second withdrawal
of the same amount

Return value:
remaining balance

Different
return value!

Where's this
balance stored?

Within the
function!

Persistent Local State

A function with a
parent frame

The parent contains
local state

Every call changes
the balance

#initialize a
withdraw...

...

>>> withdraw(25)
75

>>> withdraw(25)
50

Reminder: Local Assignment

Execution rule for assignment statements:

1. Evaluate all expressions right of =, from left to right.

2. Bind the names on the left the resulting values in the first
frame of the current environment.

Assignment binds name(s) to
value(s) in the first frame of the

current environment

Non-Local Assignment
def make_withdraw(balance):

"""Return a withdraw function with a starting balance."""

def withdraw(amount):

nonlocal balance

if amount > balance:

return 'Insufficient funds'

balance = balance - amount

return balance

return withdraw

Declare the name
"balance" nonlocal

Re-bind balance
where it was

bound previously

The Effect of Nonlocal Statements

http://www.python.org/dev/peps/pep-3104/

From the Python 3 language reference:

Names listed in a nonlocal statement must refer to pre-existing
bindings in an enclosing scope. Names listed in a nonlocal statement
must not collide with pre-existing bindings in the local scope.

http://docs.python.org/release/3.1.3/reference/simple_stmts.html#the-nonlocal-statement

Effect: Future assignments to that name change its pre-existing binding
in the first non-local frame of the current environment in which that
name is bound.

nonlocal <name>, <name 2>, ...

Python Docs: an
"enclosing scope"

http://www.python.org/dev/peps/pep-3104/
http://docs.python.org/release/3.1.3/reference/simple_stmts.html
http://docs.python.org/release/3.1.3/reference/simple_stmts.html
http://docs.python.org/release/3.1.3/reference/simple_stmts.html

Effects of Assignment Statements

x = 2

Status Effect

• No nonlocal statement
• "x" is not bound locally

Create a new binding from name "x" to object 2
in the first frame of the current environment.

• No nonlocal statement
• "x" is bound locally

Re-bind name "x" to object 2 in the first frame
of the current env.

• nonlocal x
• "x" is bound in a

non-local frame
• "x" also bound locally

SyntaxError: name 'x' is parameter and nonlocal

• nonlocal x
• "x" is not bound in a non-

local frame

SyntaxError: no binding for nonlocal 'x' found

• nonlocal x
• "x" is bound in a non-local

frame

Re-bind "x" to 2 in the first non-local frame of
the current environment in which it is bound.

Python Particulars

Python pre-computes which frame contains each name before
executing the body of a function.

Therefore, within the body of a function, all instances of a name
must refer to the same frame.

Local assignment

