61ALECTURE 8 —
SEQUENCES,
ITERABLES

Steven Tang and Eric Tzeng
July 8, 2013

What is an abstract data type (ADT)?

- We need to guarantee that constructor and selector
functions together specify the right behavior.

- Behavior condition: If we construct rational number x
from numerator n and denominator d, then
numer (x) /denom (x) must equal n/d.

- An abstract data type is some collection of selectors
and constructors, together with some behavior
condition(s).

- If behavior conditions are met, the representation is
valid.

You can recognize data types by behavior, not by bits

Tuple-based pair implementation

def pair(x, y):
"""Return a tuple-based pair.""”
return (x, y)

def getitem pair(p, i):
"""Return the element at index i of pair p."""
return p[i]

Announcements

- Homework 4 due tonight

- Homework 5 is out, due Friday

- Midterm is Thursday, 7pm

« Thanks for coming to the potluck!

The pair ADT

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

What is a pair?

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then
*getitem pair(p, O0) returnsx,and

®*getitem pair(p, 1) returnsy.

Together, selectors are the inverse of the constructor

numbers because of GCD

Generally true of container types. Not true for rational]

Functional pair implementation

{ def pair(x, y):
""'Return a functional pair."""

This function
represents a pair

Constructor is a higher-
order function

def getitem pair(p, i):
"""Return the element at index i of pair p."""

return]
Selector defers to
the functional pair

7/8/13

Using a pair

> p = ir(1, 2 .
p = pair(1, 2) As long as we do not violate

>>> getitem pair(p, @) the abstraction barrier,
1 we don't need to know how
the pairs are implemented!

>>> getitem_pair(p, 1)
2

If a pair p was constructed from elements x and y, then
®getitem pair(p, 0) returnsx,and

®getitem pair(p, 1) returnsy.

This pair representation is valid!

Tuples in environment diagrams
Tuples introduce new memory locations outside of
a frame

We use box-and-pointer notation to represent a
tuple
- Tuple itself represented by a set of boxes that hold values
- Tuple value represented by a pointer to that set of boxes
Frames Objects

Global variables

1 numbers = (1, 2, 3)
2 pairs = ((1, 2), (3, 4))

Example: http://go0.gl/LiscM

Implementing Recursive Lists Using Pairs

1,2,3,4
A recursive list is
a pair
tuple tuple i None
1 o 1 o |1 represents
.//7 3 .//7 4 g the I(?Tpty
is

The first element of the The second element of
pair is the first element the pair is the rest of
of the list the list

Example: http://goo.gl/UyekU

The sequence abstraction
red, orange, , green, blue, indigo, violet.
o, 1, ,3,4,5,6
There isn't just one sequence type (in Python or in general)

This abstraction is a collection of behaviors:

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at O for the first element.

The sequence abstraction is shared among several types,
including tuples.

Recursive Lists

Constructor:

def rlist(first, rest):
"""Return a recursive list from its first element and
the rest."""

Selectors:
def first(s):
"""Return the first element of recursive list s."""

def rest(s):
"""Return the remaining elements of recursive list s."""

Behavior condition(s):
If a recursive list s is constructed from a first element £
and a recursive list x, then
* first(s) returns £, and
* rest(s) returns r, which is a recursive list.

Implementing the Sequence Abstraction
def len_rlist(s):
"""Return the length of recursive list s."""
if s == empty_rlist:
return 0
return 1 + len_rlist(rest(s))

def getitem rlist(s, i):
"""Return the element at index i of recursive list s."""
if i == 0:
return first(s)
return getitem rlist(rest(s), i - 1)

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at O for the first element.

7/8/13

Break!

- We're transitioning from concepts to Python vocabulary

Sequence iteration

Python has a special statement for iterating over
the elements in a sequence

def count(s, value):
total = 0

Name bound in the first
frame of the current
environment
\'4

elem == value:
total +=1
return total

Sequence unpacking in for statements
A sequence of
fixed-length sequences
A4

>>> pairs =§:((1, 2), (2, 2), (2, 3), (4, 4))

>>> same_count = @

A name for each elementin | Each name is bound to a value,
a fixed-length sequence as in multiple assignment

same_count = same_count + 1

>>> same_count
2

Python sequence abstraction

Built-in sequence types provide the following behavior

Type-specific >>> a = (1, 2, 3)
constructor >>> b = tuple([4, 5, 6, 7])

>>> len(a), len(b) [Alist; moreon
Length (3, 4) this later
Element >>> al1], b—1 Count from the end;
selection (2, 7) -1is last element
>>> a[1:3], b[1:1], a[:2], b[1:]
(2, 3), O, (1, 2), (5, 6, 7))

>>> 2 in a, 4 in a, 4 not in b
(True, False, False)

Slicing

Membership

For statement execution

for <name> in <expression>:
<suite>

1. Evaluate the header <expression>, which must yield an
iterable value.
2. For each element in that sequence, in order:

A. Bind <name> to that element in the first frame of the
current environment.

B. Execute the <suite>.

Demo: http:/goo.gl/cWX38

|
The range type

Arange is a sequence of consecutive integers.”

.5 -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5,

range (-2, 3)
Length: ending value - starting value

Element selection: starting value + index

>>> tuple(range(-2, 3)) Tuple constructor

(-2, -1, 6, 1, 2)

>>> tuple(range(4)) { With a 0 starting value)

(e, 1, 2, 3)

“Ranges can actually represent more general integer sequences.

7/8/13

String literals

>>> 'I am string!"’

'I am string!’ .
>>> "I've got an apostrophe” Slnglc.e-and doublg-quoted
"I've got an apostrophe" strings are equivalent
>>> EGE
HiEE

>>> """The Zen of Python
. claims, Readability counts.
. Read more: import this."""
'The Zen of Pythor{\hclaims, Readability counts

more: import this.A
N " th "Line feed" character
acisiasnescapest the represents a new line

following character

Sequence arithmetic

Some Python sequences support arithmetic
operations
>>> city = 'Berkeley’

»> city + ', A

'Berkeley, CA'

>>> "Don't repeat yourself! " * 2 Repeat twice

"Don't repeat yourself! Don’t repeat yourself! "

>>> (1, 2, 3) * 3
(1, 2, 3,1, 2, 3,1, 2, 3)

>>> (1, 2, 3) + (4, 5, 6, 7)
(1, 2, 3, 4, 5,6, 7)

lterables

Iterables provide access to some elements in order but do not
provide length or element selection

Python-specific construct; more general than a sequence
Many built-in functions take iterables as argument

tuple Construct a tuple containing the elements

map Construct a map that results from applying the given function
to each element

filter Construct a filter with elements that satisfy the given condition

sum Return the sum of the elements
min Return the minimum of the elements
max Return the maximum of the elements

For statements also operate on iterable values.

Strings are sequences

>>> city = 'Berkeley’

>>> len(city)

8

> city[3] < Anelement of a string is
k itself a string!

The in and not in operators match substrings

>>> 'here' in "Where's Waldo?"
True

Why? Working with strings, we care about words, not characters

Sequences as conventional interfaces

We can apply a function to every element in a sequence
This is called mapping the function over the sequence
>>> fibs = tuple(map(fib, range(8)))
>>> fibs
(0, 1, 1, 2, 3, 5, 8, 13)
We can extract elements that satisfy a given condition
>>> even_fibs = tuple(filter(is_even, fibs))
>>> even_fibs
(@, 2, 8)
We can compute the sum of all elements
>>> sum(even_fibs)
10
Both map and £ilter produce an iterable, not a sequence

Generator expressions

One large expression that combines mapping and filtering to
produce an iterable

(<map exp> for <name> in <iter exp> if <filter exp>)

® Evaluates to an iterable.

® <iter exp> is evaluated when the generator expression is
evaluated.

* Remaining expressions are evaluated when elements are
accessed.

No-filter version: (<map exp> for <name> in <iter exp>)

Precise evaluation rule introduced in Chapter 4.

7/8/13

More Functions on Iterables (Bonus)

Create an iterable of fixed-length sequences
>>>a, b=(1, 2,3),.(4, 5 6, 7)

>>> for x, y inizip(a, b)x

print(x +y) "\ Produces tuples with one element
c from each argument, up to length
3 of smallest argument
9

The itertools module contains many useful functions for
working with iterables

>>> from itertools import product, combinations

>>> tuple(product(a, b[:2]))

((1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5))

>>> tuple(combinations(a, 2))

(1, 2), (1, 3), (2, 3))

7/8/13

