
61A LECTURE 6 – 
RECURSION 
Steven Tang and Eric Tzeng 
July 2, 2013 



Announcements 
• Homework 2 solutions are up! 
• Homework 3 and 4 are out 

•  Remember, hw3 due date pushed to Saturday 

• Come to the potluck on Friday! It’ll be fun :) 



The factorial of a non-negative integer n is	
  
 

Factorial 



The factorial of a non-negative integer n is 
 
	
  

	
  
 
This is called a recurrence relation; 
Factorial is defined in terms of itself 
Can we write code to compute factorial using the same 
pattern? 

Factorial 



We can compute factorial using the direct definition 
	
  

 

Computing Factorial 

def factorial(n): 
    if n == 0 or n == 1: 
        return 1 
    total = 1 
    while n >= 1: 
        total, n = total * n, n - 1 
    return total 



Can we compute it using the recurrence relation? 
 

	
  
	
  

 
 
 
 
 

This is much shorter! But can a function call itself? 

Computing Factorial 

def factorial(n): 
    if n == 0 or n == 1: 
        return 1 
    return n * factorial(n - 1) 



Let’s see what happens! 

Factorial Environment Diagram 

Compute	
  4!	
  

Compute	
  3!	
  

Compute	
  2!	
  

Compute	
  1!	
  

Alice 

Bob 

Chelsea 

David 



A function is recursive if the body calls the function itself, 
either directly or indirectly 
 

Recursive functions have two important components: 
1.  Base case(s), where the function directly computes an 

answer without calling itself 
2.  Recursive case(s), where the function calls itself as part 

of the computation 

Recursive Functions 

def factorial(n): 
    if n == 0 or n == 1: 
        return 1 
    return n * factorial(n - 1) 

Recursive	
  
case	
  

Base	
  case	
  



A warning: don’t forget your base case! 

Futurama	
  Season	
  6,	
  
Episode	
  17	
  “Benderama”	
  
©	
  TwenCeth	
  Century	
  Fox	
  Film	
  

CorporaCon	
  

No	
  base	
  case!	
  

def duplicate(size): 
    return (duplicate(0.6 * size) + 
            duplicate(0.6 * size)) 



Recursive leap of faith 
• Most important slide in the lecture! 
• Closest you’ll get to a “program” for writing recursive 

functions 
•  Follow these steps: 

1.  Figure out your base case – this is the simplest possible 
question someone could ask you about this function 

2.  Now consider the general case, and treat a slightly simpler 
recursive call as a functional abstraction 

a.  Leap of faith! Assume that the simpler call just works. 
b.  Use the simpler call to make the general case work. 



The leap of faith in action for factorial 
1.  Figure out your base case – this is the simplest possible 

question someone could ask you about this function 
•  What’s the simplest possible factorial? 
•  fact(0)	
  is just 1 

2.  Now consider the general case, and treat a slightly 
simpler recursive call as a functional abstraction 

•  General case – factorial(n) for some arbitrary n	
  
•  Simpler recursive call – factorial(n-­‐1)	
  
a.  Leap of faith! Assume that the simpler call just works. 

•  So we’re assuming factorial(n-­‐1) will correctly return (n-­‐1)!	
  
b.  Use the simpler call to make the general case work. 

•  We can write factorial(n) as n*factorial(n-­‐1)	
  



Pig Latin 
• Yes, there is a slide on Pig Latin in this lecture 
• Yes, it’s okay if you tell your friends 

• Don’t worry about if there aren’t any vowels! 

kitten	
   ittenkay	
  

chicken	
   ickenchay	
  

Leading consonants Add ‘ay’ 



Eaplay of aithfay, step 1 
Step 1: Figure out your base case – this is the simplest possible 
question someone could ask you about this function 
 

Pig latin-ize a word that already begins with a vowel! 
 

How do you solve this problem? 
 

Add ‘ay’ to the end of the word! 
 

•  This tells us two things: 
1.  The condition that indicates the base case – word begins with a 

vowel 
2.  What to do when you encounter the base case – just add ‘ay’ to the 

end 



Eaplay of aithfay, step 2 
Step 2: Now consider the general case, and treat a slightly 
simpler recursive call as a functional abstraction 

General case: piglatin(word)	
  for some arbitrary word	
  
Slightly simpler: word, but with the first consonant moved to 

the end 
a.  Leap of faith! Assume that the simpler call just works. 

•  Assume that calling piglatin on word with the first consonant 
moved to the end works 

•  For example, given ‘hello’ as our word, assume 
piglatin(‘elloh’) works 

b.  Use the simpler call to make the general case work 
•  piglatin(‘hello’)	
  ==	
  piglatin(‘elloh’)	
  ==	
  ‘ellohay’	
  



Your turn: reverse a string (recursively) 
• Write a function reverse that takes a string and returns 

that string, but in reverse: 
 
>>>	
  reverse(‘steven	
  tang’)	
  
‘gnat	
  nevets’	
  
	
  
• You may find the following tricks useful: 

>>>	
  ‘hello’[0]	
  	
  #	
  first	
  letter	
  
‘h’	
  
>>>	
  ‘hello’[1:]	
  #	
  everything	
  but	
  first	
  letter	
  
‘ello’	
  



Break! 



Fibonacci sequence 
•  The Fibonacci sequence is defined as 

def fib_iter(n): 
    if n == 0: 
        return 0 
    fib_n, fib_n_1 = 1, 0 
    k = 1 
    while k < n: 
        fib_n, fib_n_1 = fib_n_1 + fib_n, fib_n 
        k += 1 
    return fib_n 



Fibonacci sequence 
•  The Fibonacci sequence is defined as 

def fib(n): 
    if n == 0: 
        return 0 
    elif n == 1: 
        return 1 
    return fib(n - 1) + fib(n - 2) 

Two	
  recursive	
  calls!	
  



Tree recursion 
Executing the body of a function may entail more 
than one recursive call to that function 
This is called tree recursion 

fib(5)	
  

fib(4)	
  

fib(3)	
  

fib(1)	
  

1

fib(2)	
  

fib(0)	
  fib(1)	
  

01

fib(2)	
  

fib(0)	
  fib(1)	
  

01

fib(3)	
  

fib(1)	
  

1

fib(2)	
  

fib(0)	
  fib(1)	
  

01



What changes with tree recursion? 
• Not much! 
• Multiple base cases are more common 

•  But you can have multiple base cases in non-tree recursion too! 

• Need to take the leap of faith multiple times 
•  Think of multiple simpler recursive calls 
•  But each simpler call is treated the same way as before 



Example: counting change 
•  $1.00 = $0.50 + $0.25 + $0.10 + $0.10 + $0.05 
•  $1.00 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel 
•  $1.00 = 2 quarters, 2 dimes, 30 pennies 
•  $1.00 = 100 pennies 

10	
   1	
   1	
   1	
   1	
   1	
  1	
   1	
   1	
   1	
   1	
   1	
   1	
  

5	
   1	
   1	
  1	
   1	
   1	
   1	
  

5	
   5	
   1	
  

Use	
  a	
   
dime 

No dimes 
Use	
  a	
  nickel No	
   nickels 

Ways	
  to	
  make	
  6	
  cents	
  using	
  no	
  dimes	
  

Ways	
  to	
  
make	
  1	
  
cent	
  



Example: counting change 
•  The number of ways to change an amount using a fixed 

set of kinds of coins is the sum of… 
1.  The number of ways to change the remaining amount if you use 

your largest coin once 
2.  The number of ways to change the full amount, without using 

your largest type of coin 

10	
   1	
   1	
   1	
   1	
   1	
  1	
   1	
   1	
   1	
   1	
   1	
   1	
  

5	
   1	
   1	
  1	
   1	
   1	
   1	
  

5	
   5	
   1	
  

Use	
  a	
   
dime 

No dimes 
Use	
  a	
  nickel No	
   nickels 

Ways	
  to	
  make	
  6	
  cents	
  using	
  no	
  dimes	
  

Ways	
  to	
  
make	
  1	
  
cent	
  



Example: counting change 
•  The number of ways to change an amount using a fixed 

set of kinds of coins is the sum of… 
1.  The number of ways to change the remaining amount if you use 

your largest coin once 
2.  The number of ways to change the full amount, without using 

your largest type of coin 
def count_change(a, d): 
    if a == 0: 
        return 1 
    if a < 0 or d == 0: 
        return 0 
    return (count_change(a-d, d) +  
            count_change(a, next_coin(d))) 

One	
  way	
  to	
  make	
  no	
  amount	
  

Can’t	
  make	
  negaCve	
  amount,	
  
or	
  any	
  amount	
  with	
  no	
  coins	
  

FuncConal	
  abstracCon	
  to	
  get	
  next	
  coin	
  


