61A LECTURE 6 – RECURSION

Steven Tang and Eric Tzeng July 2, 2013

Announcements

- Homework 2 solutions are up!
- Homework 3 and 4 are out
 - Remember, hw3 due date pushed to Saturday
- Come to the potluck on Friday! It'll be fun :)

Factorial

The factorial of a non-negative integer *n* is

$$n! = \begin{cases} 1, & n = 0 \text{ or } n = 1\\ n * (n-1) * \cdots * 1, & n > 1 \end{cases}$$

$$(n-1)!$$

Factorial

The factorial of a non-negative integer *n* is

$$n! = \begin{cases} 1, & n = 0 \text{ or } n = 1\\ n * (n-1)!, & n > 1 \end{cases}$$

This is called a *recurrence relation*;

Factorial is defined in terms of itself

Can we write code to compute factorial using the same pattern?

Computing Factorial

We can compute factorial using the direct definition

$$n! = \begin{cases} 1, & n = 0 \text{ or } n = 1\\ n * (n-1) * \dots * 1, & n > 1 \end{cases}$$

```
def factorial(n):
    if n == 0 or n == 1:
        return 1
    total = 1
    while n >= 1:
        total, n = total * n, n - 1
    return total
```

Computing Factorial

Can we compute it using the recurrence relation?

$$n! = \begin{cases} 1, & n = 0 \text{ or } n = 1\\ n * (n-1)!, & n > 1 \end{cases}$$

This is much shorter! But can a function call itself?

```
def factorial(n):
    if n == 0 or n == 1:
        return 1
    return n * factorial(n - 1)
```

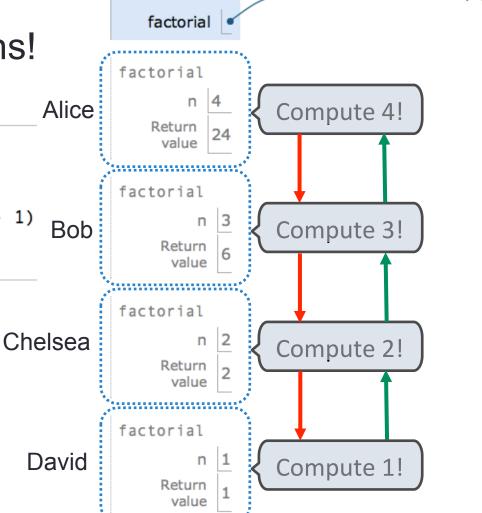
Factorial Environment Diagram

Let's see what happens!

```
Alice

1 def factorial(n):
2  if n == 0 or n == 1:
3  return 1
4  return n * factorial(n - 1)
5 Bob

6 factorial(4)
```



→func factorial(n)

Global frame

Recursive Functions

A function is *recursive* if the body calls the function itself, either directly or indirectly

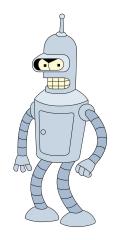
Recursive functions have two important components:

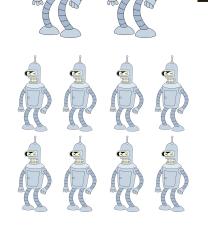
- 1. Base case(s), where the function directly computes an answer without calling itself
- 2. Recursive case(s), where the function calls itself as part of the computation

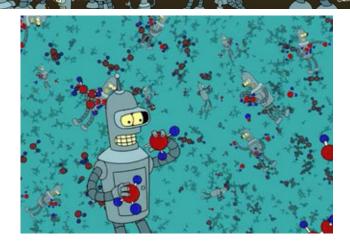
```
def factorial(n):
    if n == 0 or n == 1:
        return 1
        return n * factorial(n - 1)
Recursive
case
```

A warning: don't forget your base case!

No base case!







Futurama Season 6,
Episode 17 "Benderama"
© Twentieth Century Fox Film
Corporation

Recursive leap of faith

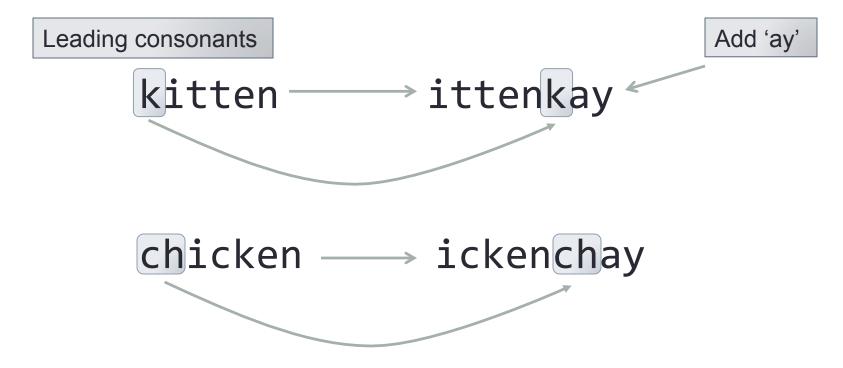
- Most important slide in the lecture!
- Closest you'll get to a "program" for writing recursive functions
- Follow these steps:
 - 1. Figure out your base case this is the simplest possible question someone could ask you about this function
 - Now consider the general case, and treat a slightly simpler recursive call as a functional abstraction
 - a. Leap of faith! Assume that the simpler call just works.
 - b. Use the simpler call to make the general case work.

The leap of faith in action for factorial

- 1. Figure out your base case this is the simplest possible question someone could ask you about this function
 - What's the simplest possible factorial?
 - fact(0) is just 1
- Now consider the general case, and treat a slightly simpler recursive call as a functional abstraction
 - General case factorial(n) for some arbitrary n
 - Simpler recursive call factorial(n-1)
 - a. Leap of faith! Assume that the simpler call *just works*.
 - So we're assuming factorial(n-1) will correctly return (n-1)!
 - b. Use the simpler call to make the general case work.
 - We can write factorial(n) as n*factorial(n-1)

Pig Latin

- Yes, there is a slide on Pig Latin in this lecture
- Yes, it's okay if you tell your friends



Don't worry about if there aren't any vowels!

Eaplay of aithfay, step 1

Step 1: Figure out your base case – this is the simplest possible question someone could ask you about this function

Pig latin-ize a word that already begins with a vowel!

How do you solve this problem?

Add 'ay' to the end of the word!

- This tells us two things:
 - The condition that indicates the base case word begins with a vowel
 - What to do when you encounter the base case just add 'ay' to the end

Eaplay of aithfay, step 2

Step 2: Now consider the general case, and treat a slightly simpler recursive call as a functional abstraction

General case: piglatin(word) for some arbitrary word Slightly simpler: word, but with the first consonant moved to the end

- a. Leap of faith! Assume that the simpler call just works.
 - Assume that calling piglatin on word with the first consonant moved to the end works
 - For example, given 'hello' as our word, assume piglatin('elloh') works
- b. Use the simpler call to make the general case work
 - piglatin('hello') == piglatin('elloh') == 'ellohay'

Your turn: reverse a string (recursively)

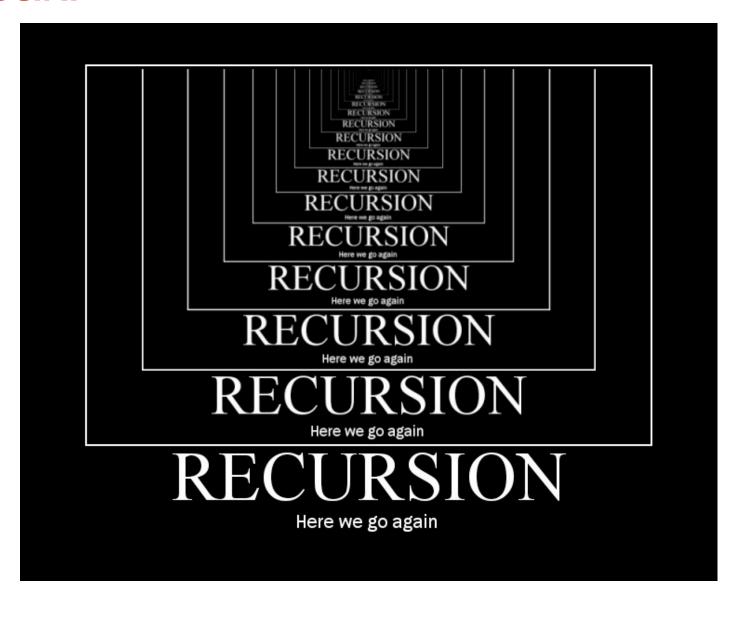
 Write a function reverse that takes a string and returns that string, but in reverse:

```
>>> reverse('steven tang')
'gnat nevets'
```

You may find the following tricks useful:

```
>>> 'hello'[0] # first letter
'h'
>>> 'hello'[1:] # everything but first letter
'ello'
```

Break!



Fibonacci sequence

The Fibonacci sequence is defined as

```
fib(n) = \begin{cases} 0, & n = 1 \\ 1, & n = 1 \\ fib(n-1) + fib(n-2), & n > 1 \end{cases}
def fib iter(n):
     if n == 0:
          return 0
     fib n, fib n 1 = 1, 0
     k = 1
     while k < n:
          fib_n, fib_n_1 = fib_n_1 + fib_n, fib_n
          k += 1
     return fib n
```

Fibonacci sequence

The Fibonacci sequence is defined as

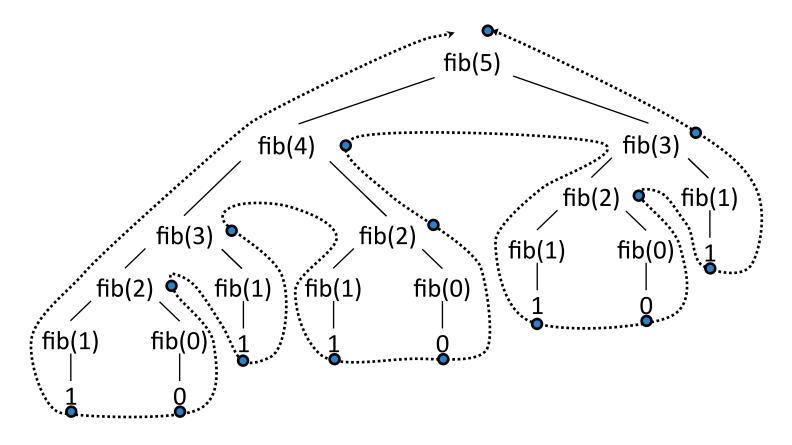
fib(n) =
$$\begin{cases} 0, & n = 0 \\ 1, & n = 1 \\ \text{fib}(n-1) + \text{fib}(n-2), & n > 1 \end{cases}$$

```
def fib(n):
    if n == 0:
        return 0
    elif n == 1:
        return 1
    return fib(n - 1) + fib(n - 2)
```

Tree recursion

Executing the body of a function may entail more than one recursive call to that function

This is called *tree recursion*

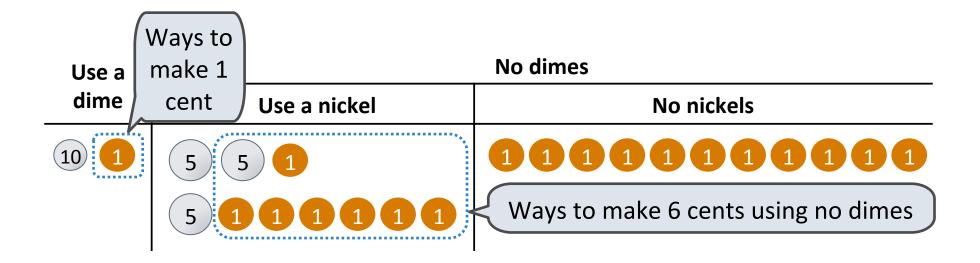


What changes with tree recursion?

- Not much!
- Multiple base cases are more common
 - But you can have multiple base cases in non-tree recursion too!
- Need to take the leap of faith multiple times
 - Think of multiple simpler recursive calls
 - But each simpler call is treated the same way as before

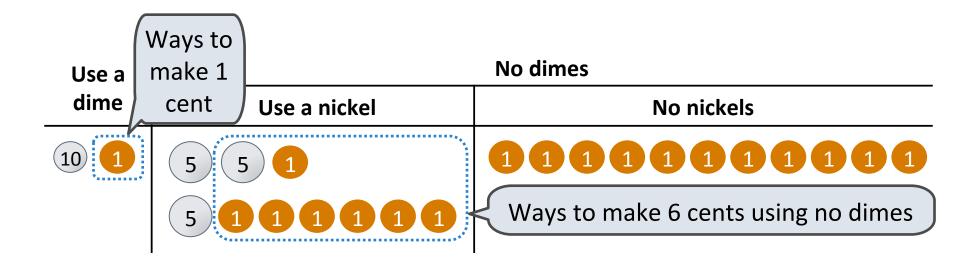
Example: counting change

- -\$1.00 = \$0.50 + \$0.25 + \$0.10 + \$0.10 + \$0.05
- \$1.00 = 1 half dollar, 1 quarter, 2 dimes, 1 nickel
- \$1.00 = 2 quarters, 2 dimes, 30 pennies
- \$1.00 = 100 pennies



Example: counting change

- The number of ways to change an amount using a fixed set of kinds of coins is the sum of...
 - 1. The number of ways to change the remaining amount if you use your largest coin once
 - The number of ways to change the full amount, without using your largest type of coin



Example: counting change

- The number of ways to change an amount using a fixed set of kinds of coins is the sum of...
 - 1. The number of ways to change the remaining amount if you use your largest coin once
 - The number of ways to change the full amount, without using your largest type of coin