
61A LECTURE 5 –

LAMBDA, NEWTON’S 

METHOD
Steven Tang and Eric Tzeng

June 30, 2013



Announcements
• hw2 is due tonight at 11:59PM; hw3 due Saturday at 11:59PM

• Project1 is due this Wednesday at 11:59PM

• Midterm 1 next Thursday, at 7PM 

• Covers everything THROUGH July 9 (includes Dictionaries, excludes 

Mutable Data)

• 2050 VLSB: for logins cs61a-aa through cs61a-hz

• 10 Evans: for everyone else

• Extra Office Hours: This Sunday from Noon to 6PM in 310 Soda

• POTLUCK!

• This Friday at 6pm in the Woz (4th floor Soda)

• (Confirmation still pending though...)

• If you’re in Berkeley, come hang out with your staff! 

We’d love to get to know you better!



Homework Syntax

• Starting with homework 2, if your file has a syntax error, you 

will automatically receive a zero.

• Before you submit, make sure that there are at least no syntax 

errors. Simply type in to the terminal or command prompt:

python filename.py

or, depending on your setup, python3 filename.py

• Other useful commands:

python3 –m doctest filename.py

python3 –i filename.py



Let’s recap...

• Last week we covered

• Names as a means of abstraction

• Functions as data

• The environment model of computation

• This week:

• More about function expressions (lambda)

• Implementing Newton’s Method as an application

• Recursion

• Data abstraction



Lambda Expressions

>>> ten = 10

>>> square = x * x

>>> square = lambda x: x * x

>>> square(4)

16

An expression: this one 
evaluates to a number

Also an expression: 
evaluates to a function

and body "return x * x"
with formal parameter x

A function

Lambda expressions are rare in Python, but important in general

Notice: no "return"

Must be a single expression



Interpreter session



Evaluation of Lambda vs. Def

Execution procedure for def statements:
1. Create a function value with signature 

<name>(<formal parameters>)
and the current frame as parent

2. Bind <name> to that value in the current frame

Evaluation procedure for lambda expressions:
1. Create a function value with signature 

l(<formal parameters>)
and the current frame as parent

2. Evaluate to that value

lambda x: x * x
def square(x):

return x * xVS



Lambda vs. Def Statements
square = lambda x: x * x

def square(x):

return x * x
VS

Both create a function with the same arguments & behavior

Both of those functions are associated with the environment in 
which they are defined

Both bind that function to the name "square"

Only the def statement gives the function an intrinsic name

The Greek 
letter lambda



Using Lambda

• Lambda expressions are useful when you want to quickly 

express a function, and don’t necessarily need to name it

• Also known as an “anonymous function” – no intrinsic 

name

• In Python, the body is only one expression. Other 

languages have more powerful lambdas.

• Demo



Short Break

• Come up with any questions you have about lambda!

• http://goo.gl/bDm2W - Environment Diagram for example 

in code

http://goo.gl/bDm2W


Newton’s Method

• So far, we’ve talked about a lot of syntax and abstract 

concepts

• Now, we’re going to dive into an in-depth code example

dealing with Newton’s Method

• Newton’s Method is used in a variety of real world 

applications

• http://en.wikipedia.org/wiki/Newton%27s_method#Applications

• For CS61A, Newton’s Method is a code example that 

makes use of HOFs and also implements the idea of 

“iterative improvement”, which is a powerful programming 

technique

http://en.wikipedia.org/wiki/Newton's_method#Applications


Newton’s Method Background
Finds approximations to zeroes of differentiable 
functions 

f(x) = x2 - 2 A “zero”

Application: a method for (approximately) computing 
square roots, using only basic arithmetic.

The positive zero of f(x) = x2 - a is 

x=1.414213562373095



Newton’s Method
Begin with a function f and 

an initial guess x

(x, f(x))

-f(x)/f'(x)

-f(x)

Visualization: http://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif

Compute the value of f at the guess: f(x)

Compute the derivative of f at the guess: f'(x)

Update guess to be: 

http://upload.wikimedia.org/wikipedia/commons/e/e0/NewtonIteration_Ani.gif


Using Newton’s Method

>>> f = lambda x: x*x - 2

>>> find_zero(f)

1.4142135623730951

How to find the square root of 2?

How to find the log base 2 of 1024?

>>> g = lambda x: pow(2, x) - 1024

>>> find_zero(g)

10.0 g(x) = 2x - 1024

f(x) = x2 - 2



Special Case: Square Roots
How to compute square_root(a)

Idea: Iteratively refine a guess x about the square root of a

What guess should start the computation?

How do we know when we are finished?

Implementation questions:

Update:

Babylonian Method

x - f(x)/f'(x)

Recall:

f(x) = x2 – a

f’(x) = 2x



Special Case: Cube Roots
How to compute cube_root(a)

Idea: Iteratively refine a guess x about the cube root of a

What guess should start the computation?

How do we know when we are finished?

Implementation questions:

Update:

x - f(x)/f'(x)

Recall:

f(x) = x3 – a

f’(x) = 3x2



Interpreter Session



Iterative Improvement

def iter_improve(update, done, guess=1, max_updates=1000):

"""Iteratively improve guess with update until done

returns a true value.

>>> iter_improve(golden_update, golden_test)

1.618033988749895

"""

k = 0

while not done(guess) and k < max_updates:

guess = update(guess)

k = k + 1

return guess

First, identify common structure.

Then define a function that generalizes the procedure. 



Newton’s Method for nth Roots
def nth_root_func_and_derivative(n, a):

def root_func(x):

return pow(x, n) - a

def derivative(x):

return n * pow(x, n-1)

return root_func, derivative

def nth_root_newton(a, n):

"""Return the nth root of a.

>>> nth_root_newton(8, 3)

2.0

"""

root_func, deriv = nth_root_func_and_derivative(n, a)

def update(x):

return x - root_func(x) / deriv(x)

def done(x):

return root_func(x) == 0

return iter_improve(update, done)

x – f(x)/f’(x)

Definition of a function zero

Exact derivative



Break



The factorial of a non-negative integer n is

Factorial



The factorial of a non-negative integer n is

This is called a recurrence relation;

Factorial is defined in terms of itself

Can we write code to compute factorial using the same 

pattern?

Factorial



We can compute factorial using the direct 

definition

Computing Factorial

def factorial(n):

if n == 0 or n == 1:

return 1

total = 1

while n >= 1:

total, n = total * n, n - 1

return total



Can we compute it using the recurrence relation?

This is much shorter! But can a function call itself?

Computing Factorial

def factorial(n):

if n == 0 or n == 1:

return 1

return n * factorial(n - 1)



Let’s see what happens!

Factorial Environment Diagram

Compute 4!

Compute 3!

Compute 2!

Compute 1!



A function is recursive if the body calls the function itself, 

either directly or indirectly

Recursive functions have two important components:

1. Base case(s), where the function directly computes an 

answer without calling itself

2. Recursive case(s), where the function calls itself as part 

of the computation

Recursive Functions

def factorial(n):

if n == 0 or n == 1:

return 1

return n * factorial(n - 1)

Recursive 
case

Base case


