
61A LECTURE 4 – 
ENVIRONMENTS 2 
Steven Tang and Eric Tzeng 
June 27, 2013 



Announcements 
• Homework 1 is due tonight, by 11:59pm! 

•  Make sure you leave yourself some time to figure out how 
submission works! 

• Homework 2 is out, due Monday by 11:59 
• And expect Homework 3 released sometime this 

weekend… 
• Work on the project! 



Congratulations! 
• You’ve almost made it through your first week of 61A! 
•  Just one more day to go! 



Functions are first-class: they can be manipulated 
as values in Python 
 
Higher-order function: a function that takes a 
function as an argument value or returns a function 
as a return value 
 
Higher order functions: 

•  Express general methods of computation 
•  Remove repetition from programs 
•  Separate concerns among functions 

Higher-Order Functions 



First, some review… 
Draw this environment diagram: 
 
x	  =	  3	  
	  
def	  of_duty()	  
	  	  	  	  return	  x	  +	  1	  
	  
def	  me_maybe(x):	  
	  	  	  	  return	  of_duty()	  *	  x	  
	  
me_maybe(5)	  



Remember… 
• We started off with the idea of having a single mapping: 

• But then functions screwed everything up. 

WRONG 
WRONG 

WRONG 

x	  
y	  
z	  
	  	  	  	  	  	  	  Etc…	  

1	  
2	  
3	  



Remember… 
•  Then we used environment diagrams (v0.1)… 

 

• …but even the almighty environment diagram isn’t good 
enough (yet) 



Functions screw everything up again! 
• More specifically, higher-order functions! 

• Old model is inadequate 

2

1

Where does n 
come from? 

Our current 
environment 

model would say 
this is an error! 



Environments and higher-order functions 
• Higher-order function: a function that takes a function as 

an argument value or returns a function as a return value 
•  Functions as arguments: 

•  The environment model we learned already handles that! 
•  We’ll discuss an example today 

•  Functions as return values: 
•  We need to extend our model a little 
•  Change: functions need to know where they were defined 
•  Most things stay the same 



Functions as arguments 

Demo: 
http://goo.gl/CBLjw 



Break! 



Environments for non-nested functions 
(review) 

2

1

“y”	  is	  not	  
found	  

“y”	  is	  not	  
found	  

Error	  

•  The environment during a call to a non-nested function 
consists of the newly created local frame and the global 
frame. 



What changes with nested functions? 
•  This is the most important slide of the lecture 
• Before: 

•  The environment during a function call consists of the new local 
frame and the global frame 

•  Check the local frame 
•  If not there, check the global frame 

• Now: 
•  The environment during a function call consists of the new local 

frame and the environment in which the function was defined 
•  Check the local frame 
•  If not there, check the rest of the environment 



Env. diagrams for nested functions 

2

1

3

Every	  user-‐defined	  func7on	  has	  a	  parent	  frame	  

The	  parent	  frame	  of	  a	  func7on	  is	  the	  frame	  in	  which	  it	  was	  defined	  

Every	  local	  frame	  has	  a	  parent	  frame	  

The	  parent	  of	  a	  local	  frame	  is	  the	  parent	  of	  the	  func7on	  called	  

Nested	  def	  

Frame	  label	  

Demo: 
http://goo.gl/e5GrG 



The structure of environments 
A frame extends the environment that begins with its 
parent 

2	  

1	  

3	  

1	  

2	   1	  

Always	  
extends	  

When	  a	  frame	  or	  func7on	  
has	  no	  label	  

	  
[parent=___]	  

	  
	  then	  its	  parent	  is	  always	  

the	  global	  frame	  	  	  

Always	  
extends	  

A	  three-‐frame	  
environment	  

A	  two-‐frame	  
environment	  

The	  global	  environment:	  
	  the	  environment	  with	  only	  the	  global	  frame	  



How to draw an environment diagram 
When	  defining	  a	  func7on:	  

Create	  a	  func7on	  value	  with	  signature	  	  
<name>(<formal	  parameters>)	  

For	  nested	  defini7ons,	  label	  the	  parent	  as	  the	  first	  frame	  of	  the	  current	  
environment	  

Bind	  <name>	  to	  the	  func7on	  value	  in	  the	  first	  frame	  of	  the	  current	  
environment	  

When	  calling	  a	  func7on:	  

1.  Add	  a	  local	  frame	  labeled	  with	  the	  <name>	  of	  the	  func7on	  

2.  If	  the	  func7on	  has	  a	  parent	  label,	  copy	  it	  to	  this	  frame	  

3.  Bind	  the	  <formal	  parameters>	  to	  the	  arguments	  in	  this	  frame	  

4.  Execute	  the	  body	  of	  the	  func7on	  in	  the	  environment	  that	  starts	  with	  this	  
frame	  



Example: function composition 
• You may be familiar with function composition from your 

math classes… 

• Code example! 

Composition 
operator 

Two input functions One output function 



Environment for function composition 

2

1

3

1

2

3

Return	  value	  of	  
make_adder	  is	  an	  

argument	  to	  compose1	  

Demo: 
http://goo.gl/1v0ds 



Closing remarks… 
• We basically only changed one thing: functions now keep 

an additional bit of information 
• With this, your environment model is now complete! 
• Practice makes perfect 
• Remember it well – if you ever can’t figure out why a 

variable has a certain value, draw the diagram! 


