
61A LECTURE 4 – 
ENVIRONMENTS 2 
Steven Tang and Eric Tzeng 
June 27, 2013 



Announcements 
• Homework 1 is due tonight, by 11:59pm! 

•  Make sure you leave yourself some time to figure out how 
submission works! 

• Homework 2 is out, due Monday by 11:59 
• And expect Homework 3 released sometime this 

weekend… 
• Work on the project! 



Congratulations! 
• You’ve almost made it through your first week of 61A! 
•  Just one more day to go! 



Functions are first-class: they can be manipulated 
as values in Python 
 
Higher-order function: a function that takes a 
function as an argument value or returns a function 
as a return value 
 
Higher order functions: 

•  Express general methods of computation 
•  Remove repetition from programs 
•  Separate concerns among functions 

Higher-Order Functions 



First, some review… 
Draw this environment diagram: 
 
x	
  =	
  3	
  
	
  
def	
  of_duty()	
  
	
  	
  	
  	
  return	
  x	
  +	
  1	
  
	
  
def	
  me_maybe(x):	
  
	
  	
  	
  	
  return	
  of_duty()	
  *	
  x	
  
	
  
me_maybe(5)	
  



Remember… 
• We started off with the idea of having a single mapping: 

• But then functions screwed everything up. 

WRONG 
WRONG 

WRONG 

x	
  
y	
  
z	
  
	
  	
  	
  	
  	
  	
  	
  Etc…	
  

1	
  
2	
  
3	
  



Remember… 
•  Then we used environment diagrams (v0.1)… 

 

• …but even the almighty environment diagram isn’t good 
enough (yet) 



Functions screw everything up again! 
• More specifically, higher-order functions! 

• Old model is inadequate 

2

1

Where does n 
come from? 

Our current 
environment 

model would say 
this is an error! 



Environments and higher-order functions 
• Higher-order function: a function that takes a function as 

an argument value or returns a function as a return value 
•  Functions as arguments: 

•  The environment model we learned already handles that! 
•  We’ll discuss an example today 

•  Functions as return values: 
•  We need to extend our model a little 
•  Change: functions need to know where they were defined 
•  Most things stay the same 



Functions as arguments 

Demo: 
http://goo.gl/CBLjw 



Break! 



Environments for non-nested functions 
(review) 

2

1

“y”	
  is	
  not	
  
found	
  

“y”	
  is	
  not	
  
found	
  

Error	
  

•  The environment during a call to a non-nested function 
consists of the newly created local frame and the global 
frame. 



What changes with nested functions? 
•  This is the most important slide of the lecture 
• Before: 

•  The environment during a function call consists of the new local 
frame and the global frame 

•  Check the local frame 
•  If not there, check the global frame 

• Now: 
•  The environment during a function call consists of the new local 

frame and the environment in which the function was defined 
•  Check the local frame 
•  If not there, check the rest of the environment 



Env. diagrams for nested functions 

2

1

3

Every	
  user-­‐defined	
  func7on	
  has	
  a	
  parent	
  frame	
  

The	
  parent	
  frame	
  of	
  a	
  func7on	
  is	
  the	
  frame	
  in	
  which	
  it	
  was	
  defined	
  

Every	
  local	
  frame	
  has	
  a	
  parent	
  frame	
  

The	
  parent	
  of	
  a	
  local	
  frame	
  is	
  the	
  parent	
  of	
  the	
  func7on	
  called	
  

Nested	
  def	
  

Frame	
  label	
  

Demo: 
http://goo.gl/e5GrG 



The structure of environments 
A frame extends the environment that begins with its 
parent 

2	
  

1	
  

3	
  

1	
  

2	
   1	
  

Always	
  
extends	
  

When	
  a	
  frame	
  or	
  func7on	
  
has	
  no	
  label	
  

	
  
[parent=___]	
  

	
  
	
  then	
  its	
  parent	
  is	
  always	
  

the	
  global	
  frame	
  	
  	
  

Always	
  
extends	
  

A	
  three-­‐frame	
  
environment	
  

A	
  two-­‐frame	
  
environment	
  

The	
  global	
  environment:	
  
	
  the	
  environment	
  with	
  only	
  the	
  global	
  frame	
  



How to draw an environment diagram 
When	
  defining	
  a	
  func7on:	
  

Create	
  a	
  func7on	
  value	
  with	
  signature	
  	
  
<name>(<formal	
  parameters>)	
  

For	
  nested	
  defini7ons,	
  label	
  the	
  parent	
  as	
  the	
  first	
  frame	
  of	
  the	
  current	
  
environment	
  

Bind	
  <name>	
  to	
  the	
  func7on	
  value	
  in	
  the	
  first	
  frame	
  of	
  the	
  current	
  
environment	
  

When	
  calling	
  a	
  func7on:	
  

1.  Add	
  a	
  local	
  frame	
  labeled	
  with	
  the	
  <name>	
  of	
  the	
  func7on	
  

2.  If	
  the	
  func7on	
  has	
  a	
  parent	
  label,	
  copy	
  it	
  to	
  this	
  frame	
  

3.  Bind	
  the	
  <formal	
  parameters>	
  to	
  the	
  arguments	
  in	
  this	
  frame	
  

4.  Execute	
  the	
  body	
  of	
  the	
  func7on	
  in	
  the	
  environment	
  that	
  starts	
  with	
  this	
  
frame	
  



Example: function composition 
• You may be familiar with function composition from your 

math classes… 

• Code example! 

Composition 
operator 

Two input functions One output function 



Environment for function composition 

2

1

3

1

2

3

Return	
  value	
  of	
  
make_adder	
  is	
  an	
  

argument	
  to	
  compose1	
  

Demo: 
http://goo.gl/1v0ds 



Closing remarks… 
• We basically only changed one thing: functions now keep 

an additional bit of information 
• With this, your environment model is now complete! 
• Practice makes perfect 
• Remember it well – if you ever can’t figure out why a 

variable has a certain value, draw the diagram! 


