61ALECTURE 4 —
ENVIRONMENTS 2

Steven Tang and Eric Tzeng
June 27, 2013

Announcements

- Homework 1 is due tonight, by 11:59pm!
- Make sure you leave yourself some time to figure out how
submission works!

- Homework 2 is out, due Monday by 11:59
- And expect Homework 3 released sometime this
weekend...

- Work on the project!

Congratulations!

- You've almost made it through your first week of 61A!
- Just one more day to go!

Higher-Order Functions

Functions are first-class: they can be manipulated
as values in Python

Higher-order function: a function that takes a
function as an argument value or returns a function
as a return value

Higher order functions:
- Express general methods of computation
- Remove repetition from programs
- Separate concerns among functions

First, some review...

Draw this environment diagram:

def of duty()
return x + 1

def me_maybe(x):
return of duty() * x

me_maybe(5)

Remember...

- We started off with the idea of having a single mapping:

- But then functions screwed everything up.

RN RONG NS

- Then we used environment diagrams (v0.1)...
Frames Objects
Global variables function
mul L/ mul(...)
1 from operator import mul square I:—-"’—\function
. def square(x): | square(x)
3 return mul(x, Xx) square
__ 4 square(3) x |3

Return
\3
value

- ...but even the almighty environment diagram isn’t good
enough (yet)

Functions screw everything up again!

- More specifically, higher-order functions!

1 from operator import add Frames Objects
‘ Global variables function
: def make_adder(n): L add(...)
4 def adder(k): add L
make_adder function
= 5 return add(n, k) make_adder (n)
6 return adder /4
7 make_adder fanciion
: n |1 adder (k)
5 make_adder (1) (2) e
5 adder | ®
Return
Where does?n e L Our current
come from? environment
adder
. 0Old del is inad t model would say
model IS Inadequate k2 this is an error!

Environments and higher-order functions

- Higher-order function: a function that takes a function as
an argument value or returns a function as a return value
- Functions as arguments:
- The environment model we learned already handles that!
- We’'ll discuss an example today
- Functions as return values:

- We need to extend our model a little
- Change: functions need to know where they were defined
- Most things stay the same

Functions as arguments

Frames Objects
1 def apply_twice(f, x): Global variables _ function
2 return f(f(x)) apply_twice LD apply_twice(f, x)
i square LD ., function
4 def square(x): " square(x)
5 return x * X .

= apply_twice
6
/ result = apply_twice(square, 2) f L
« 2

. square

2
Return ki
value
square
Demo: x 4
http://goo.gl/CBLjw Rj;‘l’;: 16

Break!

Environments for non-nested functions

(review)

- The environment during a call to a non-nested function
consists of the newly created local frame and the global

frame.
[“v” is not
1 def f(x, y): oe

|Globa1 frame func f(x, y)
; return g(x) Error f k func g(a)
.. g
4 def g(a):
- return a + x . f
6 ‘Q lllllll : X \l
7 result = f(1, 2) .

What changes with nested functions?

- This is the most important slide of the lecture

- Before:

- The environment during a function call consists of the new local
frame and the global frame

- Check the local frame
- If not there, check the global frame

- Now:

- The environment during a function call consists of the new local
frame and the environment in which the function was defined

- Check the local frame
- If not there, check the rest of the environment

Env. diagrams for nested functions

(Nested def

--------- \4

1i def iitake_adder (n):
2'“u““_def§adder(k):

3 T return k +
4 return adder
5
6
7

Qpuunnmy

add_three = make_adder(3)
result = add_three(4)

g NEENEEEEEEER

*

Demo:
http://goo.gl/e5GrG

Global frame

make_adder L
add_three ’

[Frame label)

ﬁfl} make_adder

func make_adder (n)

. v,

llllllllllllllllllll

.: -.lllllIll>n 3

. adder

| | -

. Return

u value

| -

| |

. A 20—

\ 4 :‘ .,

- adder :[parent=f1] %
k |

Every user-defined function has a parent frame

The parent frame of a function is the frame in which it was defined

Every local frame has a parent frame

The parent of a local frame is the parent of the function called

The structure of environments

A frame extends the environment that begins with its

parent

‘‘‘‘‘‘

:'Q Global frame

func make_adder(n)

The global environment:

: the environment with only the global frame

' Always f1: make_adder '(~\
e | _extends n 32 | When a frame or function
adder has no label

A tvyo-frame -

environment value

: [parent=__ |

—| Always |J adder [parent=f1]
..... K-‘ eXtendS

k 4

then its parent is always
the global frame

Return
A three-frame value |7 _
environment

How to draw an environment diagram

When defining a function:

Create a function value with signature
<name>(<formal parameters>)

For nested definitions, label the parent as the first frame of the current
environment

Bind <name> to the function value in the first frame of the current
environment

When calling a function:

1. Add alocal frame labeled with the <name> of the function

2. If the function has a parent label, copy it to this frame

3. Bind the <formal parameters> to the arguments in this frame
4

Execute the body of the function in the environment that starts with this
frame

Example: function composition

- You may be familiar with function composition from your
math classes...

Composition

operator

h=/fog
S SA

One output function Two input functions

h(z) = f(g(x))

- Code example!

Environment for function composition

1 def square(x): Global frame func square(x)
2 return x * x squareL
3 =Re adder L func make_adder (n)
4 : N
5 def ZZ:e;::(eji:'ﬁ;‘) composel L func composel(f, g)
6 return n + k f1: Nake_adder func adder (k) [parent=f1]
7 return adder : B
8 func h(x) [parent=f2]
adder L
9 def composel(f, g): I
10 def h(X): value L
11 return f(g(x))
12 return h £2: clfmposel
1 } ----- f L
14} composel(square,ivmake_adder(Z)j:u) g |4
/\ h|s
Return |
Return value of Demo:
make_adder is an \“n“’a R 3 http://goo.gl/1v0ds
X
argument to composel
adder |[parent=f1]
3
R
s |s

Closing remarks...

- We basically only changed one thing: functions now keep
an additional bit of information

- With this, your environment model is now complete!
- Practice makes perfect

- Remember it well — if you ever can’t figure out why a
variable has a certain value, draw the diagram!

