61ALECTURE 3 -
CONTROL, HOF

Steven Tang and Eric Tzeng
June 26, 2013

Let’s recap...

Life cycle of a user-defined function

Formal parameter

Def statement: Return What happens?

Function created

Name bound

2j<loperand: 2+2 Op's evaluated
argument: 4

Function called
with argument(s)

@dy (return statement)

Call expression:

operator: square
function: func square(x)

Calling/Applying: New frame!

Params bound

Body executed
(_Returnvalue)

6/26/13

Announcements

- hw1 is due tomorrow at 11:59PM
- Have to submit through your account
+ Your TA will go over homework submission in lab
- Project1 is out! Find a partner if you haven't already.

-+ Will have all the tools you need to complete the project by the end
of lecture today

Looking up names

Procedure for looking up a name from inside a function (v. 1):
1. Look it up in the local frame
2. If notin local frame, look it up in the global frame
3. Ifin neither frame, generate error

1 from operator imj
2 def square(x)="
-3 return mul(x, x)
4 square(-2) LA

Global frame func mul(...)
"enee>mul ‘ func square(x)
square L
“mul” is not

found

Multiple environments in one diagram

Every expression is evaluated in the context of an environment.

mul(x, x)

o Global frame

1 from operator import mul func mul(...)

2 def square(X)essssssasas, .)=+ mul func square(o
-3 return Ml (x, square
4 square(square(3)) %
square
: x[3
Dema: : Return ;
http://goo.gl/Nf7Lw value \E
“mul” is not
“raepx (9

Python Feature Demonstration
Multiple Assignment
Multiple Return Values
Docstrings
Doctests

Default Arguments

[
Keywords: “and” “or”

- The keywords “and” and “or” are useful for combining
values in a boolean context

- and returns a true value if all expressions are true in a
boolean context
- (5>3)and (1 + 1==2) will return True

- or returns a true value if any expression is true in a
boolean context
< (1>5)o0r (400 < 10) or (2 == 4 — 2) will return True

- But it's not quite that simple...

Interpreter session

6/26/13

Boolean Contexts

def absolute_value (x):

"""Re the absolute value of x."""
Teturn Two boolean
elif contexts

return 0
else:
return -x

George Boole

False values in Python: False, 0, "", None (more to come)

True values in Python: Anything else (True)

Read Section 1.5.4!

“Short-circuiting”

- The keyword “and” will return the first expression that is
False in a boolean context

- If there are no expressions that are False, then the last value in the
statement is returned

- The keyword “or” will return the first expression that is
True in a boolean context

- If there are no expressions that are True, then the last value in hte
statement is returned

>>> True and 5

5

>>>True or (5/0)
True

e
Break

Statements

A statement is executed by the interpreter to
perform an action

Types of statements we have seen so far
- An assignment
radius = 10

- Afunction definition
def square(x):
return x * x

- Returns, imports, assertions

Compound Statements

Compound statements:

<header>: A suite is a sequence of

{<statemen statements

i <statement>

To “execute” a suite means
to execute its sequence of
statements, in order

<separating header>:
<statement>
<statement>

Execution rule for a sequence of statements:
1. Execute the first

2. Unless directed otherwise, execute the rest

Local Assianment

1 def percent_difference(x, y):
2 difference = abs(x-y)

-3 return 100 * difference / x
4 diff = percent_difference(4e, 50)

Global frame func percent_difference(x, y)

percent_difference |-

percent_difference
x40
v 50

difference |10

Execution rule for assignment statements:
1. Evaluate all expressions right of =, from left to right.

2. Bind the names on the left to the resulting values in the first
frame of the current environment.

6/26/13

Compound Statements
A function definition is a compound statement

Compound statements:

The first header
determines a
statement’s type

The header of a
clause “controls” the
suite that follows

'<separating header>:
<statement>
<statement>

Conditional Statements

def absolute_value (x):
"""Return the absolute value of x."""

1 statement, if x >t°:
return x

3 clauses, elif x ==

3 headers, return 0

3 suites else:

return -x

Execution rule for conditional statements:
Each clause is considered in order.
1. Evaluate the header's expression.

2. Ifitis atrue value,
execute the suite & skip the remaining clauses.

lteration
B> i, total =0, 0 Global frame
PP while i < 3: i Ba(z(s
BBBi-i+l rotal XX X6
PP Ptotal = total + i

Execution rule for while statements:

1. Evaluate the header’s expression.
2. Ifitisatrue value,

execute the (whole) suite,

then return to step 1.

Example: http://goo.gl/mk7Sc

[
Break

Locally Defined Functions
The inner definition is executed each time the

outer function is called

from operator import mul | Global frame func mul(...)
def square_inside(): mul |«
N —>func square_inside()
def square(x): square_inside |«
return mul(x, x) func square(x) [parent=f1]
square_inside() f1: square_inside

square_inside()
e square
Return [(o
value

2: square_inside

A s wN e

func square(x) [parent=f2]

sauere |

Return [0 o
value

[
The Art of the Function

- Give each function exactly one job
- Don’t reapeat yourself (DRY).
- Don’t reapeat yourself (DRY).

- Define functions generally

- Proj1 has a composition score! Adhere to these guidelines

6/26/13

Locally Defined Functions
Functions can be defined inside other functions

What happens when a def is executed?
1. Create a function value with the given signature and body
2. Bind the given name to that value in the current frame

The name can then be used to call the function.

def sum_of_ squares(n):
"""Sum of the squares of the integers 1 to n"""
def square(x):
return mul (x, x)
total, k =0, 1
while k <= n:
total, k = total + square(k), k + 1
return total

|
Higher-Order Functions

Functions are first-class: they can be manipulated
as values in Python

Higher-order function: a function that takes a
function as an argument value or returns a function
as a return value

Higher order functions:
- Express general methods of computation
- Remove repetition from programs
- Separate concerns among functions

Generalizing Patterns with Parameters

Regular geometric shapes relate length and area.

Shape:

Area:

Finding common structure allows for shared implementation

Interpreter session

Interpreter session

[
Function Values as Parameters
Parameters can be bound to function values

Global frame func cube (k)

cube | .
func summation(n, term)

summation |-

summation

def cube(k):
return pow(k, 3)
cube

1

2

3

4 def summation(

5 total, k =
6 while k <= n:
7

8

9

)

total, k = total +{
return total

result = summation(5, cube)

Example: http://goo.gl/e4YBH

6/26/13

Generalizing Over Computational Processes

The common structure among functions may itself be a
computational process, rather than a number.

1+2+3+4+5 =15

P28 +33+434+5° =225

8 8 8 8
AR R S =304
35 09 T 105 T 323 30

Functions as Arguments

Function values can be passed as arguments

E{Funcﬁon of a single argument (not]

def cube (k) : called term)

return pow(k, 3)

A formal parameter that will be
def summation(n, bound to a function
"""Sum the first n terms of a sequence.

summation (5

[?ﬁ; cube function is passed as an}
total, k = 0, 1 argument value
while k <= n:

total, k = total

return total

The function bound to term gets
called here

|
That'’s it for today

- This is all | wanted to get through for today, but if we have
time left, we can go to the next slides

Functions as Return Values
Locally defined functions can be returned

They have access to the frame in which they are defined

A function that returns
a function

"""Return a function that adds n to its argument.

>>>'3:add three = make adder(B.}'? The name add_three is
>>> add_three (4) bound to a function

{def adder(k): __ ﬁ Alocal

return addi(n; k) _ defstatement

return adder Can refer to names in the
enclosing function

Interpreter Session

- This concept usually trips some students up
- Let’s see it in the interpreter

Tomorrow...

- How do higher order functions look in Environment
diagrams?

- Homework 1 is due

- Office hours today, see website

6/26/13

Call Expressions as Operators

make_adder (1) (2)

make_adder (1) (2)

Operator Operand 0

An expression that
evaluates to a evaluates to any
function value value

An expression that

def make adder(n):
def adder(k):
return add(n, k)
return adder

Higher-Order Functions

Functions are first-class: they can be manipulated
as values in Python

Higher-order function: a function that takes a
function as an argument value or returns a function
as a return value

Higher order functions:
- Express general methods of computation
- Remove repetition from programs
- Separate concerns among functions

