.
61ALECTURE 2 -
NAMES,

ENVIRONMENTS

Steven Tang and Eric Tzeng
June 25, 2013

Clarification on grading

- Labs and discussions are not graded
- ...but you really should go!

- The only things worth points are homeworks, projects,
and exams (plus a few extra points here and there...)

Some applications...
Phones Systems

Cars Programming Languages
Politics

Graphics
Games
Education <=1 Artificial Intelligence
Movies Databases ‘
Music Theory i
Sports .
Anything connected to the Security
Internet Parallel Computing
Quantum Computing

6/25/13

Announcements

- Homework 1 is released!

- Due Thursday at 11:59pm

- Feel free to ask questions about the Python problems on Piazza
- Project 1 will be released today!

- Due 7/3 at 11:59pm

- Start looking for a partner...
- Office hours start today

- Schedule on the website

+ Mine are right after this (9:30-10:30 AM)

The Course Staff - Lecturers

@ G

Graduated L&S

Back for a PhD in

Steven Tang CS from Cal Education
Eric Tzeng Graduated EECS Back for a PhD in

from Cal Computer Science

A few more acknowledgements...

- Thanks to Tom Magrino and Jon Kotker, for their advice
and sage wisdom in preparing this course

« Thanks to Brian Harvey, without whom 61A wouldn’t be
what it is today!

[
Whew!

- On to Python and actual computer science now!
- Warning: this lecture is quite a bit more dense than the
previous one!

The key to abstraction

- Names!

- Names allow us to quickly reuse:
- Data
- Rules for manipulating that data (functions)

- Quick demo in Python

And now, a mystery...

>>>
>>>
>>>

>>>
???

X
y
X
y

6/25/13

The Elements of Programming

- Primitive Expressions and Statements
« The simplest building blocks of a language

- Means of Combination
- Compound elements built from simpler ones

Today!

- Means of Abstraction
- Elements can be named and manipulated as units

A disclaimer

- This lecture, I'm going to go over a lot of naming models
that are flat out WRONG.

- Remember them, so that you don’'t make the same
mistakes!

Variables as containers

- One way people sometimes think about variables is to
think of them as containers

+ Avariable “holds” a value, and when you assign to a variable,
you're changing the value it “holds”

Variables as containers cont.

>>> x =1

>>> Yy = Xy
>>> X = 2 X 2
>y

1 # wait, what?!

“““\\“‘“““\\““““\\“

So how do variables work?

- You might be tempted to think that there’s a single
mapping of variables to their values...

Variables as references

- The correct way to model this is to treat variables as
references to values
- Some ground rules...
+ Assigning a variable changes the reference, never the value!
- Variables “point to” values, never references!

6/25/13

L L

>>> x =1 y
>y = X \
> x =2 X —X— 1
>>>y T 2
1

Functions

- We already know how to give names to data
- Now let’s give names to ways of manipulating that data!
- Done using a def statement (note: not an expression!)

Function name Parameter 0 Parameter 1

def convert_to_cents(dollars, cents):
return dollars * 100 + cents

Return statement

Consider this...
>>> X = 3
>>> def f(x):
return x
o This x is 3...
>>> f(2)
2
;” x But this x is 2!

What have we learned so far?

- Names are hard.
- Also, variables are references!
- Also, names are hard.

Break!

- When we come back, we discuss the solution to all of our
naming woes!

6/25/13

Environment diagrams

Diagram from NASA

Environment diagrams

Environment diagrams visualize the interpreter’s process.

Import statement

1 ifrom math import pi

(Assignment statement)

Code (left): Frames (right):

Statements and A name is bound to a value

expressions In a frame, there is at most
Next line is highlighted one binding per name

Back to user-defined functions

Named values are a simple means of abstraction
Named computational processes are a more powerful means of
abstraction

[Function “signature” indicates how many parameters]

>>> def i<name>(<formal parameters>): }
{return <return expression> :

[Function “body” defines a computational process]

Execution procedure for def statements:
1. Create a function value with signature
<name>(<formal parameters>)

2. Bind <name> to that value in the current frame

Calling user-defined functions

Procedure for applying user-defined functions (version 1):

1. Add alocal frame
2. Bind formal parameters to arguments in that frame

3. Execute the body of the function in the new environment

Built-in function

Global frame

1 from operator import mul
2 def square(x):

=3 3 return mul(x, x)
4 square(-2)

Intrinsic name of
function called

Local frame

Formal parameter
bound to argument

not a binding!

Calling user-defined functions

Procedure for applying user-defined functions (version 1):

1. Add alocal frame
2. Bind formal parameters to arguments in that frame

3. Execute the body of the function in the new environment

1 from operator import mul
2 def square(x):
N return mul(x, x Global frame func mul(...)

-
4 square(-2)

mul ‘

func square(x)

square L

= .

A function’s signature has all square :
the information to create a x -2
local frame fewm 4

6/25/13

Looking up names What's the point?

Procedure for looking up a name from inside a function (v. 1): . Every expression is evaluated in the context of an

1. Lookitup in the local frame environment
2. If notin local frame, look it up in the global frame . So far, the current environment is either:

3. Ifin neither frame, generate error - The global frame alone, or
+ Alocal frame, followed by the global frame

1 from operator import mul
2 def square(x)="**"Trrrny

-3 return mul(x, x) Treeees
4 square(-2) H

- Important properties of environments:

Global frame FURESTUECSS) - An environment is a sequence of frames

« The earliest frame that contains a binding for a name determines
the value that the name evaluates to

ceeepmul | func square(x)

square \
“mul” is not N
found SEne - The scope of a name is the region of code that
""" > 2 has access to it

Multiple environments in one diagram

Break!

Every expression is evaluated in the context of an environment.

The earliest frame that contains a binding for a name determines
the value that the name evaluates to.

mul(x, x)
1 from operator import mul o Global frame func mul(...)
2 def square(X)essssssanas, . T
-3 return MJI(X. square fune square()
4 square(square(3)) %,.. -
square
«|s
Return E
value
“mul” is no
“raepx (9

Formal parameters Life cycle of a user-defined function

What happens?

Formal parameter

Def statement: Return

def square(x): def square(y):
Function created
returnimul(x, x)

return mul(x, x) vs return mul(y, y) m :
Def statement -
Body (return statement))

1 from operator import mul
2 def square H

Name bound

-»z squa:::'_‘;;‘ mut 5 Globalrrfuzlan‘le func mul(...) Call expression: squarel +z Op's evaluated
func square i} operator: square argument: Function called
square | function: func square(x) with argument(s)
Formal parameters square
have local scope %2 Calling/Applying: e New frame!
Params bound

Return h Argument
value
Signature

Body executed
(_Returnvalue)

6/25/13

Closing remarks

- That was a lot to take in at once!

- It's okay if you're feeling a little overwhelmed right now
- But practice makes perfect...
- Draw these a lot (you'll get a chance in discussion today)

- Follow the rules, and you'll be okay
- We’re going to make things a little more complicated in a
couple of days, so make sure you get it ASAP!

