
6/24/13	

1	

61A LECTURE 1 –
FUNCTIONS, VALUES

Steven Tang and Eric Tzeng
June 24, 2013

Welcome to CS61A!

The Course Staff - Lecturers

Graduated L&S
CS from Cal

Back for a PhD in
Education

Graduated EECS
from Cal

Back for a PhD in
Computer Science

Steven Tang

Eric Tzeng

The Course Staff
TEACHING ASSISTANTS

Acknowledgement
Thanks to:
• Amir Kamil, who we are borrowing many of the lecture

slides from
•  John DeNero, who has developed much of the course

material, including the fantastic online readings

What is Computer Science?
“Computer science deals with the theoretical foundations of
information and computation, together with practical
techniques for the implementation and application of these
foundations”

 - Wikipedia

“Computer science uses computers to make cool stuff.”
 - Steven Tang

6/24/13	

2	

What is CS61A?
q An introduction to the “big ideas” in Computer
Science
q Functions, recursion, data structures, interpretation,

parallelism...
q Although the course uses Python, the ideas
apply to any language

q General focus: Using abstraction to manage
complexity

What is Abstraction?
• Abstraction is exposing how to use something while hiding

how it works

• Many layers of abstraction in a typical system

•  This course will teach you how to build and use
abstractions

Application
Libraries (Graphics,

Physics)
Operating System

Hardware (CPU, RAM, etc.)
Logic Gates

Some applications...
Phones
Cars
Politics
Games
Education
Movies
Music
Sports
Anything connected to the
Internet
…

Systems	

Programming	
 Languages	

Graphics	

Ar<ficial	
 Intelligence	

Databases	

Theory	

Security	

Parallel	
 Compu<ng	

Quantum	
 Compu<ng	

On to logistics….

Course Structure
• Readings cover the material; read before lecture
•  Lectures summarize material, present in new way
•  Labs introduce new topics or practical skills
• Discussions provide practice on the material
• Homeworks are deeper exercises that require more

thought than labs
• Projects are larger assignments designed to teach you

how to use and combine ideas from the course in
interesting ways

Assignments and Grading
•  ~2 homeworks per week, due on Mondays and Thursdays

•  Homework 1 released later today, due Thursday

•  4 projects, one every 2 weeks
•  Project 1 released tomorrow, due in ~2 weeks

•  2 midterms, 1 final
•  Midterm 1 on Thursday, July 11 at 7PM

• Grading is on an absolute scale, rather than a curve
•  See course website http://www-inst.eecs.berkeley.edu/~cs61a

6/24/13	

3	

 Seems fast...
• CS61A in the summer moves roughly twice as quickly as

the regular semester
• Start assignments early, and get help quickly
• Staff is here to help

•  8 teaching assistants
•  30+ (!!!) academic interns

• Use office hours, use Piazza

Piazza
q We are using an online discussion form:

https://piazza.com/class#summer2013/cs61a/

q Place to ask questions
q Both instructors and fellow students can post replies
q Official announcements will be posted to Piazza, so it is

a requirement to use Piazza

Collaboration
• Remember: Grading is on a flat scale!
•  Talk to each other
• EPA: Effort, participation, and altruism
• Homework may be completed with a partner
• Projects should be completed with a partner
•  Find a project partner in your section!

Limits of collaboration:
• Never share code (don’t e-mail, copy paste, etc.)
• Copying projects is a serious offense. We have of ways of

detecting duplicate work.

FAQ
• Midterms on 7/11 and 8/01
•  Final on 8/15

•  Let us know ASAP if you have any conflicts

•  To waitlisted: In the summer , 61A is generally able to
admit all students on the waitlist. Continue to complete
and turn in assignments

Announcements
• Make sure you have an account form and register

•  All assignments (homeworks and projects) are submitted through
your account

•  Account forms handed out in lab and discussion this week

• Office hours start Wednesday
•  See website for schedule

• Homework 1 due Thurs. at 11:59PM

Break

6/24/13	

4	

Data, Functions, and Interpreters
Data: the things that programs fiddle with

Functions: rules for manipulating data

Interpreter: an implementation of the procedure for
evaluation

2	

“UC	
 Berkeley”	

(5,	
 3,	
 2)	

Add	
 up	
 numbers	

Pronounce	
 someone’s	
 name	

Count	
 the	
 words	
 in	
 a	
 line	
 of	
 text	

Primitive Values and Expressions
• An expression is something that produces a data value.
•  The simplest types of expressions produce a value

directly. We call them primitive expressions.
•  Integers: 42, -9001, 8417765
•  Floating point (decimal) values: 8.3, -39.2
•  Strings: “It was a dark and stormy night”
•  Booleans: True, False

• A compound expression combines primitive expressions
to produce a value.
•  2 + 3
•  sqrt(3004)
•  abs(50 – 100 * 5)

Examples in the interpreter Anatomy of a Call Expression

Operators and operands are expressions, so they evaluate to
values

Evaluation procedure for call expressions:
1.  Evaluate the operator and operand subexpressions in

order from left to right.
2.  Apply the function that is the value of the operator

subexpression to the arguments that are the values of
the operand subexpressions

add	
 (
 2	
 ,	
 3	
)	

Operator	
 Operand	
 0	
 Operand	
 1	

Infix Expressions in Python
•  Infix expressions can use function call notation

2 + 3 add(2, 3)
abs(-128 + 42 * 3) abs(add(-128, mul(42, 3)))

•  Infix operator notation is syntactic sugar for function calls

• Mathematical operators obey usual precedence rules

Summary of expressions
Primitive expressions:

Call expressions:

Infix operators represent implicit call expressions

2	
 add	
 'hello'	

Number	
 Name	
 String	

max	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 (
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 2	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 ,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
)	

Operator	
 Operand	
 0	
 Operand	
 1	

max(min(pow(3,	
 5),	
 -­‐4),	
 min(1,	
 -­‐2))	

One	
 big	
 nested	

call	
 expression	

2	
 +	
 3	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 add(2,	
 3)	

6/24/13	

5	

Remember the rules…
Evaluation procedure for call expressions:
1.  Evaluate the operator and operand subexpressions in

order from left to right.
2.  Apply the function that is the value of the operator

subexpression to the arguments that are the values of
the operand subexpressions

Evaluating Nested Expressions
208	

mul	
 	
 	
 	
 	
 	
 	
 (
 	
 	
 	
 	
 	
 add(2,	
 mul(4,	
 6))	
 	
 	
 	
 	
 	
 ,	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 	
 add(3,	
 5)	
 	
 	
)	

add	
 	
 	
 (
 2	
 	
 	
 	
 ,	
 	
 	
 	
 	
 mul(4,	
 6)	
 	
 	
 	
 	
 	
)	

26	
 mul	

add	
 2	

mul	
 	
 (
 	
 4	
 	
 ,	
 	
 6	
)	

mul	
 4	
 6	

24	

add	
 	
 (
 	
 3	
 	
 ,	
 	
 5	
)	

add	
 3	
 5	

8	

Break Recap of Expression Trees
max(min(pow(3,	
 5),	
 -­‐4),	
 min(1,	
 -­‐2))	

-­‐2	

max(min(pow(3,	
 5),	
 -­‐4),	
 min(1,	
 -­‐2))	

min(pow(3,	
 5),	
 -­‐4)	

-­‐4	
 max	

min	
 -­‐4	

pow(3,	
 5)	

pow	
 3	
 5	

243	

min(1,	
 -­‐2)	

min	
 1	
 -­‐2	

-­‐2	

Operand	
 0	
 “subexpression”	
 Expression	
 tree	

Leaves	
 are	

primi<ve	

expressions	

Types of Functions

abs(number):	
 -­‐2	

2	

-­‐2	

None	

print(...):	

Python	
 displays	
 the	
 output	
 “-­‐2”	

2,	
 100	

1267650600228229401496703205376	

pow(x,	
 y):	

Creates	
 side	

effects,	
 may	

return	
 values	

Only	
 produces	
 return	

values	

Pure	
 Func<ons	

Non-­‐Pure	
 Func<ons	

The	
 interac<ve	
 interpreter	
 displays	
 all	
 return	
 values	
 except	
 None.	

Argument	

Return	
 value	

Side	
 effect	

Returns	
 None!	

Back to the interpreter
• What do you think is printed by Python when you input:

print(print(1), print(2))

Draw an expression tree.

6/24/13	

6	

Nested Print Expressions

None	

print(print(1),	
 print(2))	

print	

print(...):	
 1	

None	

display	
 “1”	

print(...):	
 2	

None	

display	
 “2”	

print(...):	
 None,	
 None	

display	
 “None	
 None”	

print(1)	

print	
 1	

None	

print(2)	

print	
 2	

None	

None	
 • Primitive Expressions and Statements
•  The simplest building blocks of a language

• Means of Combination
•  Compound elements built from simpler ones

• Means of Abstraction
•  Elements can be named and manipulated as units

The Elements of Programming

Reminders
• Account forms handed out in lab today

•  Go to your section!

• Homework 1 is due Thursday
• Project 1 released tomorrow, due July 5 at 11:59PM
• Sign up for Piazza ASAP
• No office hours today; they start tomorrow

