61A LECTURE 1 – FUNCTIONS, VALUES

Steven Tang and Eric Tzeng June 24, 2013

Acknowledgement

Thanks to:

- Amir Kamil, who we are borrowing many of the lecture slides from
- John DeNero, who has developed much of the course material, including the fantastic online readings

What is Computer Science?

"Computer science deals with the theoretical foundations of information and computation, together with practical techniques for the implementation and application of these foundations"

- Wikipedia

"Computer science uses computers to make cool stuff." - Steven Tang

What is CS61A?

- □An introduction to the "**big ideas**" in Computer Science
- Grunctions, recursion, data structures, interpretation, parallelism...
- □Although the course uses Python, the ideas apply to any language
- General focus: Using *abstraction* to manage complexity

What is Abstraction?

- Abstraction is exposing how to use something while hiding how it works
- · Many layers of abstraction in a typical system

- This course will teach you how to build and use abstractions

Some applications...

Phones Cars Politics Games

Education <

Music Sports Anything connected to

Da Th

Anything connected to the Internet

Systems

- Programming Languages Graphics Artificial Intelligence Databases
- Theory
- Security Parallel Computing
- Quantum Computing

On to logistics....

Course Structure

- Readings cover the material; read before lecture
- · Lectures summarize material, present in new way
- Labs introduce new topics or practical skills
- · Discussions provide practice on the material
- Homeworks are deeper exercises that require more thought than labs
- Projects are larger assignments designed to teach you how to use and combine ideas from the course in interesting ways

Assignments and Grading

- ~2 homeworks per week, due on Mondays and Thursdays
 Homework 1 released later today, due Thursday
- 4 projects, one every 2 weeks
- Project 1 released tomorrow, due in ~2 weeks
- 2 midterms, 1 final
- Midterm 1 on Thursday, July 11 at 7PM
- Grading is on an absolute scale, rather than a curve
 See course website http://www-inst.eecs.berkeley.edu/~cs61a

Seems fast...

- CS61A in the summer moves roughly twice as quickly as the regular semester
- · Start assignments early, and get help quickly
- Staff is here to help
- 8 teaching assistants
- · 30+ (!!!) academic interns
- · Use office hours, use Piazza

Piazza

□We are using an online discussion form:

https://piazza.com/class#summer2013/cs61a/

- □Place to ask questions
- Both instructors and fellow students can post replies
- Official announcements will be posted to Piazza, so it is a requirement to use Piazza

Collaboration

- · Remember: Grading is on a flat scale!
- Talk to each other
- EPA: Effort, participation, and altruism
- · Homework may be completed with a partner
- Projects **should** be completed with a partner
- · Find a project partner in your section!

Limits of collaboration:

- Never share code (don't e-mail, copy paste, etc.)
- Copying projects is a serious offense. We have of ways of detecting duplicate work.

FAQ

- · Midterms on 7/11 and 8/01
- Final on 8/15
- Let us know ASAP if you have any conflicts
- To waitlisted: In the summer , 61A is generally able to admit all students on the waitlist. Continue to complete and turn in assignments

Announcements

- Make sure you have an account form and register
 All assignments (homeworks and projects) are submitted through your account
- Account forms handed out in lab and discussion this week
 Office hours start Wednesday
- See website for schedule
- · Homework 1 due Thurs. at 11:59PM

Break

Remember the rules...

Evaluation procedure for call expressions:

- 1. Evaluate the operator and operand subexpressions in order from left to right.
- Apply the function that is the value of the operator subexpression to the arguments that are the values of the operand subexpressions

Evaluating Nested Expressions 208 mul add(2, mul(4, 6)) add(3,5)) mul 26 8 add (2, mul(4, 6) add (3,5) ١ add 3 5 24 add 2 mul (4,6) mul 4 6

· What do you think is printed by Python when you input:

print(print(1), print(2))

Draw an expression tree.

Reminders

- Account forms handed out in lab today
 Go to your section!
- Homework 1 is due Thursday
- Project 1 released tomorrow, due July 5 at 11:59PM
- Sign up for Piazza ASAP
- No office hours today; they start tomorrow