DRAWING ENVIRONMENT DIAGRAMS

COMPUTER SCIENCE 61A

February 6, 2013

0.1 Background

e A frame is a location where variable bindings are stored

¢ A binding is a connection between a name and a value. The name is the name of the
variable, and the value can be an integer, a function, or any other data type.

e It is important to keep track of which frame is the current frame. The current frame is
the frame in which code is being executed currently.

e The frame number is a unique identifier we give to frames if necessary. Note that
we only add frame numbers to frames when it is necessary to refer back to them.
Therefore, many frames will not end up with frame numbers.

0.2 Starting Your Diagram

e First draw the global frame. Designate that it is the global frame by writing “global
frame” in the upper-left corner. Note that the current frame is now this global frame.

global frame

Figure 1: The global frame

e Step thorough the code evaluating one line at a time.

DISCUSSION : DRAWING ENVIRONMENT DIAGRAMS Page 2
0.3 When you Encounter an Assignment Statement:

e Evaluate the code to the right of the ”=" while continuing to follow the procedure
for environment diagrams (making new frames as necessary, etc.)

e Bind the name on the left of the =" to the result of evaluating the code to the right
of the ”"=".

— Write the name to the left of the equal sign in the current frame.

— If the value of the right hand side is a number, string, or boolean value, write
this value next to the variable name.

global frame
x[6_
Y | "hello"

Figure 2: The result of evaluating x, y = 6, "hello" in the global frame

— If the value of the right hand side is something else (for example, a function),
then draw an arrow from the variable name to the value.

global frame

L— func A(x)
[e

Figure 3: The result of evaluating f = lambda x: x«x in the global frame

0.4 When you Encounter an Import Statement:

e Bind all the imported values within the current frame.

global frame _— func add(...)
add | —

Figure 4: The result of evaluating “from operator import add” in the global frame.

4

e Note that the argument list for built in functions is usually represented as ”. . .
even if the function only accepts a finite number of arguments.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION : DRAWING ENVIRONMENT DIAGRAMS Page 3
0.5 When you Encounter a Function Call for a User-Defined Function:

e Evaluate the operator
e Evaluate the operands
e Create a new frame

— Label the upper left corner of the frame with the name of the function we are
calling. Leave space to the left of this label because we may need to add a frame
number here later.

— If the function that we're calling has a parent (i.e. the function has
[parent=f<frame number>] written after it in its environment diagram rep-
resentation), then write [parent=f<frame number>] in the upper-right cor-
ner of our new frame, where <frame number> is the frame number of the par-
ent of the function we're calling.

ftmcu’onq [\mnc[iorﬂs

name adder [parent=f2] parent

Figure 5: The frame resulting from calling a function whose name is adder parent is £2 i.e. a function
whose representation in the environment diagram is something like func adder(y) [parent=f2].
Note that in this diagram, the parameters are not yet bound

— For each of the function’s arguments, add a binding in our new frame from the
argument name to the value that the operand evaluated to.

— The current frame is now the frame we just created.

- Evaluate the body of the function, stepping through the code as you had been
before, but with the current frame now the new one you just created.

— When you reach the return statement, bind “return value” to the result of evalu-
ating the right side of the return expression.

— Now, return from the function and take note that the current frame is now what
was previously the current frame in the stack.

0.6 When you Encounter a Define Statement:

e Create the new function by writing the signature of the new function to the right.

— This signature is of the form:
func <intrinsic_name> (<paraml>, ... <paramn>)
where <intrinsic_name> is the name of the function we give it in the define

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION : DRAWING ENVIRONMENT DIAGRAMS Page 4
statement and <paraml> ... <paramn> are the names of the parameters this

function takes

— If the current frame is not the global frame:

* If the current frame does not yet have a frame number, then select a new one
that has not yet been used and write “f<frame number>:” in the space we
left in the upper-left corner of the frame when we created it.

* Now, add " [parent=f<frame number>]" to the signature representing
our new function on the right. This indicates that the function’s parent is the
frame in which the function is defined (the current frame)

¢ Bind the name of the function to in the current frame to the function signature on the
right by drawing an arrow.

make_squarer L—>» func squarer(y) [parent=f1]

squa\rer |_'—/

N—

bi

Figure 6: The result of evaluating a function definition for a function named squarer from within a frame
named make_squarer.

0.7 When you encounter a lambda expression:

o Create the new function by writing the signature of the new function to the right.

— This signature is of the same form as it is for a define statement, except the
<intrinsic_name> is replaced with), because lambda functions don’t have
intrinsic names.

¢ Note that evaluating the lambda expression itself does not involve binding any names.

0.8 Looking up a name:

e Start in the current frame.

e If the name you are looking for is not in the current frame, then continue looking
in the current frame’s parent. Note that if no parent is listed for a frame, then it is
implied that the parent is the global frame.

e Continue this process until you have arrived at the global frame. If you still can’t
tind the name you are looking for then a NameError exception is thrown.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

DISCUSSION : DRAWING ENVIRONMENT DIAGRAMS Page 5

global frame
droids | "We're not the droids you are looking 4"
nle
f1: droids [parent=f1]
droids | "DROID!"
nls
f2: droids
droids |"'we're the droids"
find_droids | — .)
- - —————%—> func find_droids() [parent=f2]
find_droids [parent=f2]

Figure 7: Note that in this diagram the result of looking up droids in the find_droids frame is
we’re the droids, and the result of looking up n in the same frame is 8. The lookup order passes
from parent to child moving from the bottom frame to {2 to the global frame.

0.9 Dos and Don’ts

e Never draw an arrow from one variable name to another.
e Don’t draw environments for built in functions such as sum(...) orprint (...).

e Remember to follow the sequence of frames from parent to child—not simply from
bottom to top when looking up a name.

e Remember to write down the parent of every function or frame whenever the parent
is not the global frame.

CS61A Spring 2013: Amir Kamil, with
Hamilton Nguyen, Joy Jeng, Keegan Mann, Stephen Martinis, Albert Wu, Julia Oh, Robert Huang, Mark
Miyashita, Sharad Vikram, Soumya Basu, and Richard Hwang

	Background
	Starting Your Diagram
	When you Encounter an Assignment Statement:
	 When you Encounter an Import Statement:
	When you Encounter a Function Call for a User-Defined Function:
	 When you Encounter a Define Statement:
	 When you encounter a lambda expression:
	 Looking up a name:
	Dos and Don'ts

