
CS 61A Structure and Interpretation of Computer Programs
Summer 2013 Midterm 2 Solutions

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official 61A midterm 1 study guide attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.
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SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)
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1. (9 points) Do you feel lucky, punk?

For each of the following expressions, write the value to which it evalutes in the interactive Python interpreter.
The first two rows have been provided as examples.

Assume that you have started Python 3 and executed the following statements:

lucky = [3, 4, 5, 6, 7]

beginning = [lucky, [3, 4, 5, 6, 7]]

punk = beginning[1]

Expression Evaluates to

3 + 3 6

1 / 0 Error

lucky[1]

4

beginning[1] == lucky

True

beginning[1] is lucky

False

punk[2:]

[5, 6, 7]

punk == lucky

True

Now, assume the following line is executed in the same interpreter session:

beginning[0].append(10)

Expression Evaluates to

lucky

[3, 4, 5, 6, 7, 10]

beginning[0]

[3, 4, 5, 6, 7, 10]

beginning[1]

[3, 4, 5, 6, 7]

punk == lucky

False
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2. (6 points) Not with a fizzle, but with a bang

(a) (2 pt) Consider the following function definition.

def fizzle(n):

if n <= 0:

return n

elif n % 23 == 0:

return n

return fizzle(n - 1)

Circle the correct order of growth for a call to fizzle(n):

Θ(1) Θ(log n) Θ(
√
n) Θ(n) Θ(n2) Θ(n3) Θ(2n)

(b) (2 pt) Now consider the following function definitions.

def boom(n):

if n == 0:

return "BOOM!"

return boom(n - 1)

def explode(n):

if n == 0:

return boom(n)

i = 0

while i < n:

boom(n)

i += 1

return boom(n)

Circle the correct order of growth for a call to explode(n):

Θ(1) Θ(log n) Θ(
√
n) Θ(n) Θ(n2) Θ(n3) Θ(2n)

(c) (2 pt) Now consider the following function definition.

def dreams(n):

if n <= 0:

return n

if n > 0:

return n + dreams(n // 2)

Circle the correct order of growth for a call to dreams(n):

Θ(1) Θ(log n) Θ(
√
n) Θ(n) Θ(n2) Θ(n3) Θ(2n)
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3. (12 points) Cupcakes cupcakes cupcakes cupcakes cupcakes

(a) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global&frame&

cup& func&cup(cake)&

def&cup(cake):&
&&&if&len(cake)&!=&1:&
&&&&&&&frosting&=&cake.pop(0)&
&&&&&&&cup(cake)&
&&&&&&&cake.append(frosting)&
frosting&=&[1,&2,&3]&
cup(frosting)&

Return&Value&

Return&Value&

Return&Value&

Return&Value&

0"

3"
1"

2"
2"

1"

list"

frosting&

cake&

frosting&

None&

cup&

1&

cake&

frosting&

None&

cup&

2&

cake&

None&

cup&
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(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global&frame&

follow& func&follow()&

n&=&3&
&
def&follow():&
&&&&sunshine&=&10&
&&&&def&x(n):&
&&&&&&&&nonlocal&sunshine&
&&&&&&&&def&y(fn):&
&&&&&&&&&&&&nonlocal&sunshine&
&&&&&&&&&&&&sunshine&=&fn(sunshine)&+&n&
&&&&&&&&&&&&return&sunshine&
&&&&&&&&sunshine&+=&n&
&&&&&&&&return&y&
&&&&return&x(5)&
&
rain&=&follow()&
fall&=&rain(lambda&x:&x&*&n)&&

Return&Value&

Return&Value&

Return&Value&

Return&Value&

n& 3&

func&x(n)&[parent=f1]&

func&y(fn)&[parent=f2]&

func&λ(x)&

f1:&follow&

x&

sunshine&

f2:&x&[parent=f1]&

n&

y&

y&[parent=f2]&

fn&

λ&

x&

50&

5&

50&

45&

15&

rain&

fall& 50&
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4. (4 points) Good job, Mark

Mark is tired of having to dig around BearFacts to look up student information, so he wrote a script to create a
dictionary of student info. However, when he did so, he was sleep-deprived. As such, he accidentally swapped
the keys and the values! Now he’s stuck with a dictionary that maps any single piece of student information
to the student’s login:

>>> info['Eric Tzeng'] # info is mark's faulty dictionary

'cs61a-ta'
>>> info['eric.tzeng@berkeley.edu']
'cs61a-ta'

Mark is too tired to fix this, so you’ll have to do it for him. We’ll do this by writing a get_info function. It
should take a student login string and a faulty info dictionary as its two arguments and return a list containing
all of that student’s information. The returned list can contain a student’s information in any order, but it
must contain all of the information for a student found in the faulty dictionary.

>>> get_info(’cs61a-ta’, info)

[’Eric Tzeng’, ’eric.tzeng@berkeley.edu’]

You may assume that no two students have duplicate information. However, you may not assume that names
and emails are the only pieces of information stored in the dictionary.

def get_info(login, info_dict):

"""Retrieve student information based on the student’s login, using the

provided (faulty) info_dict.

>>> mark_dict = {’Andrew Huang’: ’cs61a-tf’, ’awesomeandrew@example.com’: ’cs61a-tf’,

... ’Robert Huang’: ’cs61a-td’, ’coolrob42@example.com’: ’cs61a-td’}

>>> get_info(’cs61a-td’, mark_dict)

[’Robert Huang’, ’coolrob42@example.com’] # order doesn’t matter

>>> get_info(’cs61a-tf’, mark_dict)

[’awesomeandrew@example.com’, ’Andrew Huang’] # order doesn’t matter

"""

info_list = []

for info, account in info_dict.items():

if account == login:

info_list.append(info)

return info_list



Login: 7

5. (5 points) Express yourself

In the first week of class, we learned that expressions like mul(sub(4, 5), add(2, 3)) can be represented as
expression trees. In this problem we use our Tree data structure to further explore this idea.

We propose representing expressions using a binary tree such as the Tree class you have seen in lecture. In
this binary tree representation, leaves always represent atomic values such as 2 or True, and non-leaf nodes
always represent function calls. For example, the expression mul(sub(4, 5), add(2, 3)) corresponds to the
following binary expression tree:

<built-‐in	  
function	  mul>	  

<built-‐in	  
function	  sub>	  

<built-‐in	  
function	  add>	  

4	   5	   2	   3	  

Write a function evaluate, which takes a binary expression Tree and returns what that expression would
evaluate to. You may assume that all operators will take exactly 2 arguments, and that nodes always have
either 0 or 2 children (never 1).

The class definition for Tree can be found in the midterm study guide.

def evaluate(exp):

"""Evaluates exp, which is an expression tree.

>>> from operator import add, sub, mul

>>> exp = Tree(3) # 3

>>> evaluate(exp)

3

>>> exp = Tree(add, Tree(3), Tree(4)) # add(3, 4)

>>> evaluate(exp)

7

>>> exp = Tree(mul,

... Tree(add, Tree(3), Tree(5)),

... Tree(sub, Tree(5), Tree(2))) # mul(add(3, 5), sub(5, 2))

...

>>> evaluate(exp)

24

"""

if exp.left and exp.right:

return exp.entry(evaluate(exp.left), evaluate(exp.right))

return exp.entry
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6. (8 points) The private life of Albert Wu

Albert keeps all of his top secret information in a binary tree. This prevents the layperson from reading his
data. However, well trained computer scientists (such as you) can still access his information.

As a further layer of protection, Albert turns some of the nodes in his trees into Eert nodes. Eert nodes,
which have Tree as their base class, are like normal Tree nodes, except they swap their left and right branches.
(Albert settles for nothing less than the most advanced encryption techniques known to man.)

(a) (3 pt) Complete the __init__ method for the Eert class on the next page. Make sure to use inheritance
as much as possible. The Eert class should work as follows:

>>> e = Eert("61A account info",

... Tree("Username: cs61a-te"),

... Tree("Password: imsocool"))

>>> e.entry # unchanged

"61A account info"

>>> e.left.entry # swapped with right

"Password: imsocool"

>>> e.right.entry # swapped with left

"Username: cs61a-te"

(b) (5 pt) Complete the definitions of the decrypt methods for both the Tree and Eert classes on the next
page. When the decrypt method is invoked on a binary tree containing Tree and Eert nodes, it returns
a copy of the binary tree, but with all Eert nodes replaced with Tree nodes. During this replacement, you
should also swap the left and the right back to their proper positions! Here is a graphical representation
of the process:

1	  
Eert	  

2	  
Tree	  

3	  
Eert	  

6	  
Tree	  

7	  
Tree	  

4	  
Eert	  

5	  
Tree	  

1	  
Tree	  

3	  
Tree	  

2	  
Tree	  

4	  
Tree	  

5	  
Tree	  

7	  
Tree	  

6	  
Tree	  

Original:	   Decrypted:	  

In terms of actual Python code, it should work as follows:

>>> old = Tree("League of Legends accounts",

... Eert("Main account", # swaps username and password positions

... Tree("Username: citrusdrink"),

... Tree("Password: imdiamond1")),

... Tree("Smurf account",

... Tree("Username: yummycitrusdrink"),

... Eert("Password: ishouldbeapro"))) # no children, so no swapping

>>> new = old.decrypt()

>>> old.left.left.entry # this got swapped because of the Eert

"Password: imdiamond1"

>>> new.left.left.entry # no longer swapped

"Username: citrusdrink"

>>> old.right.right.entry

"Password: ishouldbeapro"

>>> new.right.right.entry

"Password: ishouldbeapro"
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class Tree(object):

def __init__(self, entry, left=None, right=None):

self.entry = entry

self.left = left

self.right = right

def decrypt(self):

"*** PART B ***"
left, right = None, None

if self.left:

left = self.left.decrypt()

if self.right:

right = self.right.decrypt()

return Tree(self.entry, left, right)

class Eert(Tree):

def __init__(self, entry, left=None, right=None):

"*** PART A ***"
Tree.__init__(self, entry, right, left)

def decrypt(self):

"*** PART B ***"
tree = Tree.decrypt(self)

tree.left, tree.right = tree.right, tree.left

return tree
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7. (6 points) kp it

Complete the definition of the skip procedure in Scheme. The skip procedure should take a list as its only
argument and return a copy of the list with every other element removed, beginning with the first element:

STk> (skip '(1 2 3 4 5))

(2 4)

STk> (skip '(a (b c) d e))

((b c) e)

STk> (skip '(50))
()

(define (skip lst)

(if (<= (length lst) 1)

’()

(cons (cadr lst) (skip (cddr lst)))))
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8. (0 points) Express yourself (v2)

Express your feelings in the space below through your choice of creative medium, such as poetry or illustration.
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Comments
Problem 1
Grading: 1 pt each.

Problem 2
Grading: 2 pts each.

Common Mistakes: The first part looks very much like a linear-time function. However, since it can never
recurse more than 23 times, it is actually constant time. (Can you see why?)

Problem 3
For both portions, the full rubric for the problem is available on Pandagrader.

Part A

Grading: 6 pts

Many students created extra list objects instead of removing and adding elements to the original list. This led
to many students obtaining the incorrect final list, which should have been the reverse of the original. Some
students also forgot that pop returns the object at the particular index and also removes it from the original
list. It does not return the object inside a one-element list.

Many students also did not write that the return values for the cup frames are None. If a function does not
explicitly have a return statement, it actually returns None.

For this problem, we established a baseline of 2 points. If the student created a global variable for frosting

and bound it to a list, created one call frame for cup, and also bound the local cake variable to a list, the
student could not receive lower than 2 points out of the maximum 6.

Part B

Grading: 6 pts

Many students did not understand how nonlocal affects the environment diagram and the outcome of the
function calls. Students incorrectly created multiple sunshine variables and updated the newest one. Many
students also thought that the lambda frames parent is the y frame. However, it is actually the global frame,
and this affected the final outcome of fall.

Some students also did not realize that the follow and the x call frames should return the y function object.
Many also did not bind rain to the y function object.

We established multiple baselines.

• Students received a minimum total of 1 point if they created a follow call frame, bound the sunshine

variable to an integer and bound x to a function object.

• Students received a minimum total of 2 points if they met the 1 point baseline and also created a call
frame for x, bound n to an integer, and bound y to a function object.

• Students received a minimum total of 3 points if they met the 2 point baseline and also had the correct
return values for the follow and x call frames.

• Students received a minimum total of 5 points if they had everything correct, except used the y call frame
as the parent of the lambda frame, and thus incorrectly obtained the final values for fall, sunshine and
the return values.



13

Problem 4
Grading: 6 pts

Solutions were graded using the following rubric:

• 1 pt for iterating over the original dictionary in some way

• 1 pt for correctly retrieving values from the dictionary

• 1 pt for comparing values to login

• 1 pt for storing the keys of matching logins in a list

Common Mistakes: Most students iterated over the dictionary in some fashion, but quite a few did so
incorrectly. Some students forgot that for key in info_dict only iterates over keys, and not the values as
well. Other students forgot that the keys, values, and items attributes of dictionaries are methods, and thus
didn’t actually call the method properly.

As long as values were retrived from info_dict in some way, we awarded a point. This could be achieved
through square-bracket notation (info_dict[key]) or by iterating over info_dict.values() or info_dict.items().

A common mistake was comparing the keys to the login, rather than the value. A related error was storing
values in the list, rather than the keys. Other students correctly stored the keys, but appended the values to
the list incorrectly (e.g. info += key).

Problem 5
Grading: 5 pts

• 1 pt for checking if exp is a leaf

• 1 pt for returning exp.entry in the base case

• 1 pt for two recursive calls on the same code path, one on exp.left and one on exp.right

• 1 pt for attempting to use exp.entry as an operator

• 1 pt for correctly combining the recursive calls with the operator

Common Mistakes: For the base case, there were two common mistakes:

(a) Many people checked for exp is None rather than checking if exp was a leaf.

(b) Some people returned exp, which is a Tree, rather than exp.entry, which is the value stored in the Tree.

Some students checked the type of the entry, instead of checking whether or not it was a leaf. This was not
accepted, since it is possible for the leaf entries to be functions.

Problem 6
Part A

• 1 pt for attempting to use inheritance by making some call to Tree.__init__

• 1 pt for correctly swapping the left and right children

• 1 pt for a functionally correct Eert.__init__ method

Common Mistakes: The most common mistake by far was not using inheritance (i.e. not calling Tree.__init__
at all). Many people also called the method, then manually swapped the branches afterward – but this is re-
dundant, since we could’ve swapped the branches by passing them in the opposite order!
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Part B

Grading: 5 pts

• 0.5 pt for correct base cases in Tree.decrypt

• 0.5 pt for correct base cases in Eert.decrypt

• 0.5 pt for returning a new Tree in Tree.decrypt

• 0.5 pt for returning a new Tree in Eert.decrypt

• 1 pt for making the correct recursive calls to decrypt in Tree.decrypt

• 1 pt for making the correct recursive calls to decrypt in Eert.decrypt

• 1 pt for swapping the left and right branches in Eert.decrypt

We graded solutions that involved calling Tree.decrypt from Eert.decrypt on a case-by-case basis. Errors
like calling decrypt incorrectly or mutating the original Tree/Eert instance were penalized 0.5 pts.

Common Mistakes: The most common mistake was incorrectly calling the decrypt method. Some students
didnt call the decrypt method and instead did something like self.left.decrypt (note the missing paren-
theses!). Others called decrypt(self.left), which is an error because there is no decrypt function. Either
of these errors resulted in a 0.5 pt penalty if the solution was otherwise correct.

The other most common mistake was not returning a new Tree. If the solution created a new Tree in all cases,
the points for returning a new Tree were awarded. However, if this new tree was not returned, 0.5 pts were
deducted.

Some other minor errors included:

• Forgetting to check whether the right or left branches were None before calling decrypt on them.

• Checking if self == None as a base case. This will never be True because self is an instance of a Tree,
thus it can never be None.

• Checking if self.entry was a Tree or an Eert instead of self. This was solving a completely different
problem!

Problem 7
Grading: 6 pts

• 1 pt for a base case

• 1 pt for correct base cases

• 1 pt for taking the cadr of lst

• 1 pt for taking the cdr of lst and recursing on it

• 1 pt for correctly recursing on the cddr of lst

• 1 pt for creating a new lst

• -1 pt for bad syntax

• -0.5 pt for miscellaneous errors

There are many ways to solve this problem. Other than the provided solution, you could also create a helper
function:

(def (skip lst)

(def (helper lst include?)

(cond ((<= (length lst) 1) ’())

(include? (cons (car lst) (helper (cdr lst) #f)))

(else (helper (cdr lst) #t))))

(helper lst #f))
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This helper solution keeps a boolean argument which alternates between #t and #f. It only keeps entries when
the boolean is true.

Common Mistakes:

• Missing a base case (checking for the one element list)

• Failing to skip an element

• Scheme syntax errors, such as (car (cdr (lst)))

Problem 8
Many of you are very talented! Steven has provided a drawing of his own on these solutions.


