
CS 61A Structure and Interpretation of Computer Programs
Summer 2013 Midterm 1

INSTRUCTIONS

• You have 2 hours to complete the exam.

• The exam is closed book, closed notes, closed computer, closed calculator, except one hand-written 8.5” × 11”
crib sheet of your own creation and the official 61A midterm 1 study guide attached to the back of this exam.

• Mark your answers ON THE EXAM ITSELF. If you are not sure of your answer you may wish to provide a
brief explanation.

Last name

First name

SID

Login

TA & section time

Name of the person to
your left

Name of the person to
your right

All the work on this exam
is my own. (please sign)

For staff use only

Q. 1 Q. 2 Q. 3 Q. 4 Q. 5 Q. 6 Total

/12 /5 /3 /11 /7 /12 /50

2

1. (12 points) Proceed with call-tion

For each of the following expressions, write the value to which it evaluates and what would be output by the
interactive Python interpreter. The first two rows have been provided as examples.

• In the Evaluates to column, write the value to which the expression evaluates. If it evaluates to a
function value, write Function. If evaluation causes an error, write Error.

• In the column labeled Interactive Output, write all output that would be displayed during an interactive
session, after entering each call expression. This output may have multiple lines. Whenever the interpreter
would report an error, write Error. You should include any lines displayed before an error.

Assume that you have started Python 3 and executed the following statements:

from operator import mul

x = 3

def square(x):

return mul(x, mul(x, 1))

def blaster(y):

return print(square(y) + x)

Expression Evaluates to Interactive Output

square(7) 49 49

1/0 Error Error

square(2) + square(x)

print(square(3))

blaster(5)

print(blaster(2) + 5)

blaster(blaster(3))

25 or (5 / 0)

Login: 3

2. (5 points) Lambda? No thanks, I prefer chicken

(a) (2 pt) Fill in the blanks below so that foo(5)(10)() returns [5, 10]. You may not write any numbers in
your solution, and you may only add expressions in the blanks.

foo = lambda __________: lambda y: __

(b) (3 pt) Fill in the blanks below so that the final call expression below evaluates to a tuple value. For this
section, you may write numbers, but not tuples, and you may only add expressions in the blanks.

def love(x):

if x == 'zedd':
return [1, 2, lambda: (2, 3)]

else:

return lambda: 5

(lambda _____________, banana: foxes_____________________________)(love, 'clarity')

3. (3 points) Tracing through the facts

Consider the following portion of code:

def tracer(fn):

def traced(x):

print('Calling', fn, '(', x, ')')
result = fn(x)

print('Got', result, 'from', fn, '(', x, ')')
return result

return traced

def fact(n):

if n == 0:

return 1

return n * fact(n - 1)

new_fact = tracer(fact)

Circle the Choice X heading of one of the options below corresponding to what Python would display if we
ran new_fact(2) in an interpreter session. You may assume that the “ADDRESS” in each output is correct.

Choice A
Calling <function fact at ADDRESS> (2)

Calling <function fact at ADDRESS> (1)

Calling <function fact at ADDRESS> (0)

Got 1 from <function fact at ADDRESS> (0)

Got 1 from <function fact at ADDRESS> (1)

Got 2 from <function fact at ADDRESS> (2)

2

Choice B
Calling <function fact at ADDRESS> (2)

Got 2 from <function fact at ADDRESS> (2)

Calling <function fact at ADDRESS> (1)

Got 1 from <function fact at ADDRESS> (1)

Calling <function fact at ADDRESS> (0)

Got 1 from <function fact at ADDRESS> (0)

2

Choice C
Calling <function fact at ADDRESS> (2)

Got 2 from <function fact at ADDRESS> (2)

2

Choice D
2

Choice E
The output is none of the above. If you select this choice, please briefly explain why:

4

4. (11 points) Save the environment (diagrams)!

(a) (5 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global&frame&

thrift&

x&=&1&
def&thrift(x,&y):&
&&&&def&inner(z):&
&&&&&&&&return&foo(5,&10)&+&z&
&&&&return&inner&
&
def&foo(y,&z):&
&&&&return&x&+&y&+&z&
&
shop&=&thrift(2,&3)&
shop(7)&

Return&Value&

func&thrift(x,&y)&

foo& func&foo(y,&z)&

x& 1&

Return&Value&

Return&Value&

Return&Value&

Login: 5

(b) (6 pt) Fill in the environment diagram that results from executing the code below until the entire program
is finished, an error occurs, or all frames are filled. You need only show the final state of each frame. You
may not need to use all of the spaces or frames.

A complete answer will:

• Add all missing names, labels, and parent annotations to all local frames.

• Add all missing values created during execution.

• Show the return value for each local frame.

Global&frame&

make_test& func&make_test(num,&checker)&

def&make_test(num,&checker):&
&&&&def&test(subm):&
&&&&&&&&return&checker(subm)&
&&&&return&test&
&
def&q5_checker(subm):&
&&&&return&subm(10)&==&15&
&
num&=&2&
test_q5&=&make_test(5,&q5_checker)&
result&=&test_q5(lambda&x:&x&+&num)&

Return&Value&

Return&Value&

Return&Value&

Return&Value&

q5_checker&
func&q5_checker(subm)&

6

5. (7 points) Testing our (pot)luck

While planning the potluck, the 61A staff decided to try and guess the number of people that would show up.
In order to do this, they decided to define a new abstract data type to record everyone’s predictions. Of course,
the 61A staff is bad at computer science, so they need your help to make this work!

(a) (2 pt) We want to make a prediction abstract data type that will record both a person’s name as well
as their guess for the number of attendees. Based on the provided constructor make_prediction, fill in the
definitions for the get_name and get_guess selectors.

def make_prediction(name, guess):

return (name, guess)

def get_name(prediction):

"""Gets the name of the person who made the given prediction.

>>> get_name(make_prediction('eric', 25))

'eric'
"""

def get_guess(prediction):

"""Gets the number of attendees that this prediction expected to show up

to the potluck.

>>> get_name(make_prediction('eric', 25))

25

"""

Login: 7

(b) (5 pt) Now complete the print_winner function. It takes a sequence of predictions and the actual number
of attendees, and prints a congratulatory message based on whose guess was closest. You may assume that
the sequence of predictions is non-empty. Ties should go to the person whose prediction appears earliest
in the sequence. Remember to respect data abstraction.

def print_winner(predictions, correct_num):

"""Given a sequence of predictions (predictions) and the actual number of

attendees (correct_num), print the message '___ is the winner', where the

blank is filled in with the name of the person who made the winning

prediction.

>>> albert_pred = make_prediction('albert', 10000)

>>> brian_pred = make_prediction('brian', 85)

>>> mark_pred = make_prediction('mark', 97)

>>> preds = (albert_pred, brian_pred, mark_pred)

>>> print_winner(preds, 83)

brian is the winner

>>> preds2 = (make_prediction('rohan', 90), make_prediction('jeffrey', 70))

>>> print_winner(preds2, 80)

rohan is the winner

"""

8

6. (12 points) Learning to count

Steven likes to have a timer with him during lectures so that he knows how much time is left until the end of
lecture. He has a timer he really likes that counts the number of seconds that have elapsed since the beginning
of lecture.

Unfortunately, it turns out that the timer he bought was manufactured before humans had discovered the
number six! The timer works normally, except it skips every number containing a 6 as one of its digits. For
example, here are the first twenty numbers displayed by this timer:

0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21

In this example, note how it skips the numbers 6 and 16, because they both have at least one digit that is a 6.
This means that when the timer displays 21, in reality only 19 seconds have passed!

Obviously, the way the timer is now isn’t very helpful for Steven. Help him solve his problem by writing a
function to compute the true number of seconds that have elapsed in his lectures.

For this entire problem, do not use any loop statements. Use recursion only.

(a) (3 pt) First, complete the has_six helper function, which takes an integer and returns whether or not said
integer has a 6 as one of its digits. Do not use any loop statements. Use recursion. Additionally,
do not convert n to a string.

def has_six(n):

"""Determines whether the integer n has a 6 as one of its digits.

>>> has_six(123)

False

>>> has_six(567)

True

"""

Login: 9

(b) (4 pt) Now, use your has_six function to complete the previous function. previous takes an integer n

and determines the number that would have appeared before it on the timer. In other words, it determines
the largest integer less than n that does not have a 6 as any of its digits. You may assume that n will always
be a positive integer. Once again, do not use any loop statements. Use recursion.

Note: you may assume that you have a working version of has_six. You can receive full credit on this
section without completing part (a).

def previous(n):

"""Determines the number that showed on the timer just before n.

>>> previous(3)

2

>>> previous(7)

5

>>> previous(70)

59

"""

(c) (5 pt) Now, use your previous function to complete the num_seconds function, which takes an integer
representing the number shown on the timer and returns the actual number of seconds that have elapsed.
As before, do not use any loop statements. Use recursion.

Note: you may assume that you have a working version of previous. You can receive full credit on this
section without completing part (b).

def num_seconds(n):

"""Based on the number currently displayed on the timer, n, returns the true

number of seconds that have elapsed.

>>> num_seconds(8) # skips 6

7

>>> num_seconds(20) # skips 6 and 16

18

"""

10

7. (0 points) Extra credit

In the box below, write a positive integer. The student who writes the lowest unique integer will receive one
extra credit point. In other words, write the smallest positive integer that you think no one else will write.

This is the end of the test. Feel free to use the rest of the space for scratch work. You could also draw us a
picture, if you’re so inclined!

Login: 11

(This page intentionally left blank)

12

(This page intentionally left blank)

CS 61A Midterm 1 Study Guide – Page 1

208
mul(add(2, mul(4, 6)), add(3, 5))

add(2, mul(4, 6))
26mul

add 2
mul(4, 6)

mul 4 6

24

add(3, 5)

add 3 5

8

-2
2

-2
None

abs(number):

print(...):

display “-2”

2, 10
1024

pow(x, y):

Pure Functions

Non-Pure Functions

A name evaluates to the value bound to that name in the
earliest frame of the current environment in which that
name is found.

Defining:

Call expression:

square(x):

return mul(x, x)

>>> def

square(2+2)

Calling/Applying: square(x):

return mul(x, x)

Def
statement

Formal parameter

Body

Return
expression

(return statement)

operand: 2+2
argument: 4operator: square

function: square

Intrinsic name

4

16Argument

Return value

 <header>:
 <statement>
 <statement>
 ...
 <separating header>:
 <statement>
 <statement>
 ...
 ...

Compound statement

Suite

Clause

def cube(k):
 return pow(k, 3)

def summation(n, term):
 """Sum the first n terms of a sequence.

 >>> summation(5, cube)
 255
 """
 total, k = 0, 1
 while k <= n:
 total, k = total + term(k), k + 1
 return total

Each clause is considered in order.
1.Evaluate the header's expression.
2.If it is a true value, execute the suite, then skip the
remaining clauses in the statement.

1. Evaluate the header’s expression.
2. If it is a true value, execute the (whole) suite, then
return to step 1.

Execution rule for while statements:

Execution rule for def statements:

Execution rule for assignment statements:

Evaluation rule for call expressions:

Execution rule for conditional statements:

Function of a single
argument (not called term)

A formal parameter that
will be bound to a function

The function bound to term
gets called here

The cube function is passed
as an argument value

0 + 13 + 23 + 33 + 43 + 55

Higher-order function: A function that takes a function as an
argument value or returns a function as a return value

Nested def statements: Functions defined within other
function bodies are bound to names in the local frame

Evaluation rule for or expressions:

Evaluation rule for and expressions:

Evaluation rule for not expressions:

Applying user-defined functions:

1.Evaluate the operator and operand subexpressions.
2.Apply the function that is the value of the operator
subexpression to the arguments that are the values of the
operand subexpressions.

1.Create a new local frame with the same parent as the
function that was applied.

2.Bind the arguments to the function's formal parameter
names in that frame.

3.Execute the body of the function in the environment
beginning at that frame.

1.Create a new function value with the specified name,
formal parameters, and function body.

2.Its parent is the first frame of the current environment.
3.Bind the name of the function to the function value in the
first frame of the current environment.

1.Evaluate the expression(s) on the right of the equal sign.
2.Simultaneously bind the names on the left to those values,
in the first frame of the current environment.

1.Evaluate the subexpression <left>.
2.If the result is a false value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate the subexpression <left>.
2.If the result is a true value v, then the expression
evaluates to v.

3.Otherwise, the expression evaluates to the value of the
subexpression <right>.

1.Evaluate <exp>; The value is True if the result is a false
value, and False otherwise.

A name is bound to a value

In a frame, there is at most
one binding per name

Statements and expressions
Red arrow points to next line.
Gray arrow points to the line
just executed

Frames:Code:

Import statement

Assignment statement

Name Value

Binding

Local frame

Intrinsic name of
function called

Formal parameter
bound to argument Return value is

not a binding!

Built-in function

User-defined
function

2

1

“mul” is
not found

2

1

3

1

2 1

Always
extends

When a frame or
function has no label

[parent=___]

 then its parent is
always the global

frame

Always
extends

A three-frame
environment

A two-frame
environment

The global environment:
 the environment with only the global frame

A frame extends the environment that begins with its parent

2

1

“y” is
not found

“y” is
not found

Error

 def abs_value(x):

 if x > 0:
 return x
 elif x == 0:
 return 0
 else:
 return -x

1 statement,
3 clauses,
3 headers,
3 suites,
2 boolean
 contexts

•An environment is a
sequence of frames

•An environment for a non-
nested function (no def
within def) consists of
one local frame, followed
by the global frame

Name

def make_adder(n):
 """Return a function that takes one argument k and returns k + n.

 >>> add_three = make_adder(3)
 >>> add_three(4)
 7
 """
 def adder(k):
 return k + n
 return adder

CS 61A Midterm 1 Study Guide – Page 2

A function that returns a function

A local
def statement

The name add_three is
bound to a function

Can refer to names in
the enclosing function

square = lambda x,y: x * y

and body "return x * y"
with formal parameters x and y

A function

Must be a single expression

square = lambda x: x * x def square(x):
 return x * xVS

• Both create a function with the same arguments & behavior

• Both of those functions are associated with the environment
in which they are defined

• Both bind that function to the name "square"

• Only the def statement gives the function an intrinsic name

No
• Square takes one argument.
• Square has the intrinsic name square.
• Square computes the square of a number.
• Square computes the square by calling mul.

Yes
What does sum_squares need to know about square?

def square(x):
 return mul(x, x)

def sum_squares(x, y):
 return square(x)+square(y)

Yes
No

Begin with a function f and
an initial guess x

 (x, f(x))

-f(x)/f'(x)

-f(x)

�� ���)

�����

>>> f = lambda x: x*x - 2
>>> find_zero(f, 1)
1.4142135623730951

How to find the square root of 2?

1. Compute the value of f at the guess: f(x)
2. Compute the derivative of f at the guess: f'(x)
3. Update guess to be:

def iter_improve(update, done, guess=1, max_updates=1000):
 """Iteratively improve guess with update until done returns a true value.

 >>> iter_improve(golden_update, golden_test)
 1.618033988749895
 """
 k = 0
 while not done(guess) and k < max_updates:
 guess = update(guess)
 k = k + 1
 return guess

def newton_update(f):
 """Return an update function for f using Newton's method."""
 def update(x):
 return x - f(x) / approx_derivative(f, x)
 return update

def approx_derivative(f, x, delta=1e-5):
 """Return an approximation to the derivative of f at x."""
 df = f(x + delta) - f(x)
 return df/delta

def find_root(f, guess=1):
 """Return a guess of a zero of the function f, near guess.

 >>> from math import sin
 >>> find_root(lambda y: sin(y), 3)
 3.141592653589793
 """
 return iter_improve(newton_update(f), lambda x: f(x) == 0, guess)

2

1

3

1

2

3

• Every user-defined function has a
parent frame

• The parent of a function is the
frame in which it was defined

• Every local frame has a parent
frame

• The parent of a frame is the
parent of the function called

A function’s signature
has all the information
to create a local frame

make_adder(1)(2)

make_adder(1) (2)

Operand	 0Operator

An expression that
evaluates to a function

value
An expression that

evaluates to any value

Facts about print
•Non-pure function
•Returns None
•Multiple arguments are
 printed with a space
 between them
>>> print(4, 2)
4 2

def factorial(n):
 if n == 0 or n == 1:
 return 1
 return n * factorial(n - 1)

factorial(4)

1
2
3
4
5
6

A function is recursive if the body calls the function
itself, either directly or indirectly
Recursive functions have two important components:
1. Base case(s), where the function directly computes
an answer without calling itself
2. Recursive case(s), where the function calls itself
as part of the computation

