
CONCURRENCY 7b
COMPUTER SCIENCE 61A

August 8, 2013

1 Concurrency

On your computer, you often use multiple programs at the same time. You might be read-
ing Piazza posts on your internet browser, talking to friends through instant messaging,
streaming music from Spotify, and maybe using a hundred other programs. But you only
have one computer, and one CPU! How can so many programs run all at once?

Since a computer program is a series of instructions and a process is the execution of those
instructions, what actually happens is that the CPU switches between different processes
very quickly, doing a little for each process before moving on to the next. This creates the
illusion that the programs are running concurrently.

This is because a process can contain many threads, all of which access the memory and
instructions allocated to a certain process. In a multi-threaded process, different threads
can be working on different sections of the code, or on different inputs to the process,
”concurrently.”

Today’s discussion is on parallelism, and the concurrency issues that might arise from hav-
ing multiple programs run simultaneously.

As a general note, parallel computing is extremely important in computer science today,
because it is becoming harder to increase the speed of processors due to physical heat lim-
itations. To achieve more processing power, computers now utilize multiple processors -
your computer probably has at least two ”cores” in its processor.

1

DISCUSSION 7B: CONCURRENCY Page 2
1.1 Decomposing a Python Statement

Before we can talk about concurrency, we need to first understand what happens under
the hood when the interpreter executes a Python statement.

Typically, a Python statement can cause the computer to

• Retrieve values from memory

• Compute new values

• Store values into memory

For example:

y = 5 store 5 -> y

x = y * 3 load y: 5
compute y*3: 15
store 15 -> x

print(x) load x: 15
compute (call function print) 15

When two processes are run in parallel, it is not clear which one will start first, or when
the CPU will switch from one to the other.

For example, consider the following:

def one():
print(’hello’)
print(’world’)

def two():
print(’jom magrotker’)

Running one() and two() in parallel can yield any one of the following possibilities:

Possibility 1 Possibility 2 Possibility 3
hello hello jom magrotker
world jom magrotker hello
jom magrotker world world

Exactly what the interpreter prints will be different for every computer, and will even be
different for different trials on the same computer!

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 7B: CONCURRENCY Page 3
1.2 Questions

1. Consider the following code:

>>> def make_withdraw(balance):
def withdraw(amount):

nonlocal balance
if amount > balance:

print(’Insufficient funds’)
else:

balance = balance - amount
print(balance)

return withdraw
>>> w = make_withdraw(10)

What are all the possible pairs of printed statements that could arise from executing
the following 2 lines in parallel?

>>> w(8)
>>> w(7)

2. Suppose that Steven, Joy, and Albert decide to pool some money together:

>>> balance = 100

Now suppose Steven deposits $10, Joy withdraws $20, and Albert withdraws half of
the money in the account by executing the following commands:

Steven: balance = balance + 10
Joy: balance = balance - 20
Albert: balance = balance - (balance / 2)

List all the different possible values for balance after these three transactions have
been completed, assuming that the banking system forces the three processes to run
sequentially in some order.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 7B: CONCURRENCY Page 4
3. What are some other values that could be produced if the system allows the pro-

cesses to be interleaved?

For the following questions, what are possible values that x and y could have if the
given two threads are run concurrently?

4. Starting with x = 1,

>>> x = x * 2 >>> x = x + 10

5. Starting with x = 1, y = 1,

>>> x = x + 5 >>> x = x + y + 1
>>> y = 3

6. Starting with x = 1,

>>> if x % 2 == 0: >>> x = x * 2
... x = x + 1
... else:
... x = x + 100

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 7B: CONCURRENCY Page 5

2 Shared State

Problems arise in parallel computation when one process influences another during crit-
ical sections of a program.

Critical sections are sections of code that need to be executed as if they were a single in-
struction, but are actually made of several statements. For a parallel computation to be-
have correctly, the critical sections need to have atomicity – a guarantee that these sections
will not be interrupted by any other code.

There are several methods of synchronizing our code, but they all share the same idea –
each method has some way of signalling to other processes that they are currently han-
dling shared data, and that other processes should not modify the data.

Think of traffic lights at an intersection: the only thing that stops a driver at a red light is
the shared understanding that everyone will stop when they see a red light; there is no
physical mechanism that actually makes people stop!

2.1 Locks

Locks are shared objects that are used to signal that shared state is being read or modified.
They are also referred to as a mutexes (short for ”mutual exclusion”). In Python, a process
can acquire and release a lock, using the acquire and release methods respectively.
Consider the following code:

>>> from threading import Lock
>>> lock = Lock()
>>> def one():

lock.acquire() # ’one’ acquires ’lock’
print(’hello’)
print(’world’)
lock.release() # ’one’ releases ’lock’

>>> def two():
lock.acquire() # ’two’ acquires ’lock’
print(’jom’)
lock.release() # ’two’ releases ’lock’

While a lock is acquired by a process, any other process that tries to perform the acquire
action will be required to wait until the lock becomes free. Only one process can acquire
a lock at a time.

For a lock to “protect” a set of variables, all code blocks that deal with those variables
should be surrounded by acquire() and release() calls.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 7B: CONCURRENCY Page 6
Let’s assume that one() and two() run in parallel, with one() starting first. Visually, it
looks like this:

1 one() # one starts
2 lock.acquire() # acquires lock two() # two starts
3 print(’hello’) lock.acquire() # two can’t acquire lock
4 print(’world’)
5 lock.release() # releases lock
6 print(’jom’) # two can acquire lock
7 lock.release() # releases lock

2.2 Questions

1. Rewrite the make withdraw function from the previous question such that the criti-
cal sections are protected by the lock.

>>> from threading import Lock
>>> def make_withdraw(balance):

balance_lock = Lock()

2. What are the possible pairs of printed values if the following code is now run?

>>> w = make_withdraw(10)
>>> w(8) #these 2 lines are executed in parallel
>>> w(7) #these 2 lines are executed in parallel

2.3 Semaphores

Sometimes we want to grant more than one thread access to a resource. We use a syn-
chronization construct called a semaphore to accomplish this. Semaphores are similar to
locks, except that they can be acquired multiple times up to a limit.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 7B: CONCURRENCY Page 7
The state of the semaphore starts at some positive integer, n, and follows these rules:

• Each time acquire is called, n decreases by 1.

• Each time release is called, n increases by 1.

• If a process tries to acquire the semaphore while n is 0, then that process will be
required to wait until n is greater than 0 (i.e. another process called release()).

Here is an example of how we would model a parking garage with a specific number of
parking spots and two entrances using a semaphore. In our parking garage,

• We are given car objects that want to enter and exit the garage.

• A car cannot enter unless it is guaranteed to have a spot.

• We want to keep a list of cars currently in the garage.

• A car can always exit the garage.

TOTAL_SPOTS = 10
open_spots = Semaphore(TOTAL_SPOTS)
cars_lock = Lock()
cars = []
def enter_garage(car):

entrances call this function when a car wants to enter
open_spots.acquire()
cars_lock.acquire()
cars.append(car)
cars_lock.release()

def exit_garage(car):
entrances call this function when a car exits
cars_lock.acquire()
cars.remove(car)
open_spots.release()
cars_lock.release()

If a car wants to enter the garage, it must acquire the semaphore. Once ten cars have
entered the garage, the semaphore’s count goes down to 0. This prevents another car
from entering until a car currently in possession of the semaphore has released it.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 7B: CONCURRENCY Page 8
2.4 Deadlock

Deadlock is a situation that occurs when two or more processes are stuck, waiting for
each other to finish. The following two functions will deadlock if run concurrently:

lock1 = Lock()
lock2 = Lock()

def foo():
lock1.acquire()
lock2.acquire()
print(’hello’)
print(’world’)
lock1.release()
lock2.release()

def bar():
lock2.acquire()
lock1.acquire()
print(’jom’)
lock2.release()
lock2.release()

Visually, it looks like this:

1 two() # two starts
2 one() # one starts lock2.acquire # acquires lock2
3 lock1.acquire() # acquires lock1 lock1.acquire() # can’t acquire lock1
4 lock2.acquire() # can’t acquire lock2

one has to wait for two to release lock2 before one can continue – but two has to wait
for one to release lock1 before two can release lock2! Thus, the two functions are stuck in
deadlock.

When writing programs that utilize concurrency, you have to design your code in such a
way that it avoids deadlock.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 7B: CONCURRENCY Page 9
2.5 Question

1. Modify the following code such that compute and anti_compute will avoid dead-
lock, but will still be able to run in parallel without corrupting data.

>>> x_lock = Lock()
>>> y_lock = Lock()
>>> x = 1
>>> y = 0
>>> def compute():

x_lock.acquire()
y_lock.acquire()
y = x + y
x = x * x
x_lock.release()
y_lock.release()

>>> def anti_compute():
y_lock.acquire()
x_lock.acquire()
y = y - x
x = sqrt(x)
y_lock.release()
x_lock.release()

2.6 Message Passing

An alternative way for handling concurrent computation is to avoid sharing memory
altogether, thus avoiding the problems we’ve seen above. Instead, we let computations
behave independently, but give them a controlled way in which that can send messages
to each other to coordinate.

Suppose for example that we want to map a function foo onto the elements of a list, but
the foo function takes a very long time. Instead of running foo on just one element at
a time, we could run foo on all the cores inside our computer. The different threads of
computation could then pass their results back to the main thread which can put them
together again.

Without concurrency, we might have the following code:

def foo(n):
Do something that takes a really long time
...

L = list(range(n))
M = list(map(foo, L))

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 7B: CONCURRENCY Page 10
1. If foo is O(n3), how long does this code take for input size is n?

2. Consider instead the code below, which uses (an unwritten) MessageReceiver class
which implements a method for sending and receiving messages. The idea is that n
many independent processes get run which will pass their results back to the main
thread. This thread will then receive those results and put the answers together.

Assuming that you now have n many processors to run the computation on, what is
the running time of the entire process?

def run_computation_thread(main_thread, n):
result = foo(n)
main_thread.send((n, result))

L = list(range(n))
M = list(range(n))
main_thread = MessageReceiver()

Start n many threads running
for i in range(n):

This creates an independent process which will run
the target function passed to it
thread = Thread(target = \

lambda: run_computation_thread(main_thread, L[i]))
thread.start()# Receive results from all the threads

for i in range(n):
Get the next result, or wait until someone sends us one.
result = main_thread.receive()
M[result[0]] = result[1]

3. The advantage of message passing is that nowhere in the code do we actually need to
worry about critical sections or deadlocks. However, unlike Locks and Semaphores,
Python doesn’t have a built-in class for message passing. Instead, fill in a definition
for MessageReceiver which implements the send/receive methods using Locks
and Semaphores.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 7B: CONCURRENCY Page 11
class MessageReceiver:

def __init__(self):
self.__semaphore = Semaphore(0)
self.__messages_lock = Lock()
self.__messages = []

def send(self, message):

def receive(self):

4. We saw above how we can use Locks to avoid incorrect results when multiple ATMs
try to withdraw from an account simultaneously. Now consider how we might solve
a similar problem using message passing. Suppose we have a number of processes
acting as ATMs running concurrently with the main Bank process. Make sure you un-
derstand why this code doesn’t have critical sections the same way the Lock example
did.

class Account:
def __init__(self):

self.balance = 0
def deposit(self, x):

self.balance += x
def withdraw(self, x):

self.balance -= x
class Bank:

def __init__(self):
self.accounts = {}

def create_account(account_num):
self.accounts[account_num] = Account()

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 7B: CONCURRENCY Page 12
def atm_process(bank_receiver):

my_receiver = MessageReceiver()
while True:

account_num = input(’Account Number: ’)
action = input(’withdraw/deposit: ’)
amount = input(’Amount: ’)
Send a command to the bank and get a result back.
Print the result.

def bank_process(bank):
my_receiver = MessageReceiver()
while True:

""" Receive a message and process it. Send the string
’OK’ back to the ATM if the command was valid (i.e.
was ’deposit’ or ’withdraw’) and send back
’Bad Command’ otherwise."""

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

