
INTERPRETERS 6a
COMPUTER SCIENCE 61A

July 30, 2013

In last week’s discussion, we introduced the Calculator language, a simple Scheme-based
language that supports simple arithmetic operations.

We will be continuing using Calculator as an example to study how interpreters work. In
this discussion, we move onto a more full-fledged version of the Calculator interpreter
that closely resembles Project 4: the Scheme interpreter.

1 Warmup

1. Describe what tokenization does. What does it take as input? What does it return as
output?

2. Describe what parsing does. What does it take as input? What does it return as output?

3. Describe what evaluation does. What does it take as input? What does it return as
output?

1

DISCUSSION 6A: INTERPRETERS Page 2

2 Tokenization

2.1 Concept

In its broadest sense, tokenization takes a string of user input and converts it into a se-
quence of tokens. There are a couple of details every interpreter needs to determine:

• What counts as a token? In Calculator, the only valid tokens are parentheses, num-
bers (e.g. 3, 5.5), and arithmetic operators (e.g. +, *).

• What type of sequence will contain the tokens?

In this class, we don’t focus on how the tokenization process happens. Instead, the impor-
tant takeaway is what the tokenization returns, and how to interact with it.

In minicalc (the first interpreter we saw, in Discussion 5b), the tokenizer returns a
Python list of tokens. From an educational standpoint, we have already been using lists
for a while in this class, so it is (presumably) more familiar to you, the student.

2.2 Buffers

In scalc (the Calculator interpreter we introduced today), the tokenizer returns a Buffer
object. A Buffer object is similar to a Python list, but only supports two methods:

• pop: the Buffer class’s version of pop takes exactly 0 arguments, and removes the
first token from the Buffer (e.g. removes from the front of the Buffer).

• current: returns the first token in the Buffer, but does not remove it from the Buffer.

Buffer objects are not built-in to Python. We have implemented a Buffer class in both
scalc and in the Project 4 Scheme interpreter.

2.3 Questions

1. What would Python print, assuming the tokenizer is analyzing Calculator input?

>>> buffer = Buffer(tokenize_line(’(+ 3 4)’))
>>> buffer.current()

>>> buffer.pop()

>>> buffer.current()

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 6A: INTERPRETERS Page 3
>>> buffer = Buffer(tokenize_line(’+) * 4’))
>>> # buffers don’t care about syntactic correctness
>>> token = buffer.pop()
>>> token

>>> buffer.pop()

3 Parsing

3.1 Concept

In an interpreter, the parser takes a sequence of tokens (from the tokenizer) and converts
it into a data structure that the evaluator (seen later on) can understand.

In minicalc (the interpreter from Discussion 5b), the parser consisted of two functions:
read exp and read tail.

def read_exp(tokens):
"""In minicalc, tokens is a Python list"""
...
token = tokens.pop(0)
if token == ’(’:

exp = read_tail(tokens)
...

def read_tail(tokens):
if tokens[0] == ’)’:

tokens.pop(0)
return nil

return Pair(read_exp(tokens), read_tail(tokens))

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 6A: INTERPRETERS Page 4
In scalc and the Project 4 Scheme interpreter, the parser is similarly composed of two
functions: scheme read and read tail.

def scheme_read(src):
"""In scalc and scheme, src is a Buffer object"""
...
val = src.pop()
...
if val == ’(’:

return read_tail(src)
...

def read_tail(src):
...
if src.current() == ’)’:

src.pop()
return nil

first = scheme_read(src)
rest = read_tail(src)
return Pair(first, rest)

Notice that the two versions of the parser look very similar. Try to see which parts corre-
spond to each other!

3.2 Mutual Recursion

Recall that mutual recursion refers to two (or more) functions that call continually call
each other. You’ll notice that scheme read and read tail are mutually recursive —
this allows their implementation to be relatively straightforward. The procedure is as
follows:

1. If scheme read sees a ’(’, it calls read tail

2. read tail then calls scheme read to parse the first complete Scheme expression
in the Buffer. This becomes the first part of the resulting Pair. Remember that
scheme read removes tokens from the Buffer!

3. read tail then calls itself recursively to parse the rest of the Pair.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 6A: INTERPRETERS Page 5
3.3 Questions

1. For each of the following lines of input, determine what scheme read would return.

>>> scheme_read(Buffer(tokenize_line(’4’)))

>>> scheme_read(Buffer(tokenize_line(’(+ 3 4)’)))

>>> scheme_read(Buffer(tokenize_line(’(+ (- 5 4) 3)’)))

2. For the following Buffer of tokens determine how many times scheme read is called,
and how many times read tail is called. The first one is done for you.

>>> ’(’, ’+’, 3, 4, ’)’

scheme read: 4

read tail: 4

>>> 4

>>> ’(’, ’+’, ’(’, ’-’, 4, 3, ’)’, 5, ’)’

4 Evaluation

4.1 Concepts

In the interpreter, the evaluator takes its input from the parser and computes a value
based on the rules of the language. In Calculator, the evaluator takes an expression (e.g.
a Pair object) from the parser (scheme read), and computes an arithmetic operation.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 6A: INTERPRETERS Page 6
In minicalc, the evaluator consists of two functions:

def calc_eval(exp):
if isinstance(exp, Pair):

return calc_apply(exp.car, map_rlist(calc_eval, exp.cdr))
else:

return exp

def calc_apply(op, args):
if op == ’+’:

...
elif op == ’-’:

...

In scalc, the evaluator is similarly composed to of two functions:

def calc_eval(exp):
if type(exp) in (int, float):

...
elif isinstance(exp, Pair):

arguments = exp.second.map(calc_eval)
return calc_apply(exp.first, arguments)

...

def calc_apply(op, args):
...
if op == ’+’:

...
elif op == ’-’:

...

Again, try to figure out which parts correspond to each other! One thing you’ll notice is
that the Pair objects used by scalc have different names for the first and the rest than
the Pairs used in minicalc.

4.2 Mutual Recursion...?

In both minicalc and scalc, the calc apply function is simple enough that it doesn’t
make a mutually recursive call to calc eval. However, in more sophisticated inter-
preters (like the Scheme interpreter in Project 4), the apply function will make a mutually
recursive call to the eval function.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 6A: INTERPRETERS Page 7
4.3 Questions

1. For each of the following lines, determine how many times calc eval and calc apply
are called.

>>> ’4’

>>> ’(+ 2 3)’

>>> ’(+ 2 (- 3 4) 5)’

2. In Discussion 5b, we implemented the and special form. Here, we’ll implement the
or special form. First of all, why are and and or considered special forms?

3. calc eval has been modified to call a function do or form, which handles the or
operator. Implement do or form so that it works.

def calc_eval(exp):
...
elif isinstance(exp, Pair):

if exp.first == ’or’:
return do_or_form(exp.rest)

arguments = exp.second.map(calc_eval)
return calc_apply(exp.first, arguments)

def do_or_form(exp):
"*** YOUR CODE HERE ***"

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

