SCHEME AND CALCULATOR

COMPUTER SCIENCE 61A

July 25, 2013

In the next part of the course, we will be working with the Scheme programming lan-
guage. In addition to learning how to write Scheme programs, we will eventually write a
Scheme interpreter in Project 4.

This discussion will give you some more practice with Scheme and introduce you to in-
terpreting computer programs.

0.1 Warmup — What Would Scheme Do?

STk> (define a 1)

?

STk> a

?

STk> (define b a)

?

STk> b

?

STk> (define c ’a)

?

STk> c

?

STk> (define (foo x) (+ x 1))
?

STk> (define (bar x) (*x x (+ x 1)))
o)

STk> (bar (foo 3))
?

DISCUSSION 5B: SCHEME AND CALCULATOR Page 2

Evaluating Function Calls and Special Forms

1.1 Functions

Now, you might notice that Scheme does function calls differently. To call a function in
Scheme, first give the symbol for the function name, then give the arguments (remember
the spaces!). But just as in Python, you evaluate the operator (the leftmost expression
between the parentheses) before evaluating the arguments left to right. Then, apply the
operator to the evaluated arguments.

So when you evaluate (+ 1 2), first evaluate the + symbol which is bound to a built-
in addition function. Then, evaluate the primitives 1 and 2. Finally, apply the addition
function to the arguments.

Some important functions you’ll want to use are:
® +, -, %, /

e cqg?,=,>,>=,<,<=

1.2 Questions

1. What do the following return?

o (+ 1)
e (x 3)
e (= (+ 2 1) (+ 1.5 2))

1.3 Special Forms

However, there are certain things that look like function calls that aren’t. These are called
special forms and have their own rules for evaluation. You've already seen one- define
where, of course, the first argument can’t be evaluated (or else it'd search for unbound
variables!). Another one we’ll use for this class is if.

An if expression looks like this: (if <CONDITION> <THEN> <ELSE>), where
<CONDITION>, <THEN>, and <ELSE> are expressions.

It's evaluated exactly as it is in Python. First, the <CONDITION> is evaluated. If it evalu-
ates to # £, then <ELSE> is evaluated. Otherwise, <THEN> is evaluated. Everything that
isnot #f is a "true” expression.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 5B: SCHEME AND CALCULATOR Page 3
STk> (if ’'this—-evaluates-to-true 1 2)

1

STk> (if #f (/ 1 0) ’'this—-is—-returned)

this—-is-returned

There are also special forms for the boolean operators which exhibit the same short-
circuiting behavior that you see in Python. The return values are either the value that
lets you know the expression evaluates to a true value or #£.

STk> (and 1 2 3)

3

STk> (or 1 2 3)

1

STk> (oxr #t (/ 1 0))
#t

STk> (and #f (/1 0))
#f

STk> (not 3)

#r

STk> (not #t)

#f

1.4 Questions

STk> (if (oxr #t (/1 0)) 1 (/ 1 0))

?

STk> (if (> 4 3) (+ 1 2 3 4) (+ 3 4 (» 3 2)))
-

STk> ((1f (< 4 3) + —-) 4 100)
?

Lambdas, Environments, and Defining Functions

Scheme has lambdas too! In fact, lambdas are more powerful in Scheme than in Python.
The syntaxis (lambda (<PARAMETERS>) <EXPR>). Likein Python, lambdas are func-
tion values. Likewise, in Scheme, when a lambda expression is called, a new frame is
created where the symbols defined in the <PARAMETERS> section are bound to the argu-
ments passed in. Then, <EXPR> is evaluated under this new frame. Note that <EXPR> is
not evaluated until the lambda value is called.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 5B: SCHEME AND CALCULATOR Page 4
STk> (define x 3)

X
STk> (define y 4)

Yy

STk> ((lambda (x y) (+ x y)) 6 7)
13

Like in Python, lambda functions are also values! So you can do this to define functions:

STk> (define square (lambda (x) (* X X)))
square

STk> (square 4)

16

You might notice that this is a little tedious though. Luckily Scheme has a way out-
define:

STk> (define (square x) (* X X))
square

STk> (square 5)

25

When youdo (define (<FUNCTIONNAME> <PARAMETERS>) <EXPR>), Scheme will
automatically transformitto (define <FUNCTIONNAME> (lambda (<PARAMETERS>)
<EXPR>) for you. In this way, lambdas are more foundational to Scheme than they are to
Python. Unlike Python lambdas, Scheme lambdas can have more than one statement.

There is also another special form based around lambda- let. The structure of let is as
follows:

(let ((<SYMBOL1l> <EXPR1>)

(<SYMBOLN> <EXPRN>))
<BODY>)

This special form really just gets transformed to:

((lambda (<SYMBOL1> ... <SYMBOLN>) <BODY>) <EXPR1> ... <EXPRN>)

You'll notice that what 1et does then is bind symbols to expressions. For example, this is
useful if you need to reuse a value multiple times, or if you want to make your code more
readable:

(define (sin x)
(if (< x 0.000001)
X

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 5B: SCHEME AND CALCULATOR Page 5
(let ((recursive-step (sin (/ x 3))))
(= (x 3 recursive-step)
(4 (expt recursive-step 3))))))

2.1 Questions

1. Write a function that calculates factorial. (Note how you haven’t been told any meth-
ods for iteration.)

(define (factorial x)

2. Write a function that calculates the Nth fibonacci number

(define (fib n)
(if (< n 2)
1

Pairs and Lists

So far, we have lambdas and a few atomic primitives. How do we create larger more
complicated data structures? Well, the most important data-structure from which you’ll
build most complex data structures out of is the pair. A pair is an abstract data type that
has the constructor cons which takes two arguments, and it has two accessors car and
cdr which get the first and second argument respectively. car and cdr don’t stand for
anything really now but if you want the history go to http://en.wikipedia.org/
wiki/CAR_and_CDR

STk> (define a (cons 1 2))
a

STk> a

(1 . 2)

STk> (car a)

1

STk> (cdr a)

2

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

http://en.wikipedia.org/wiki/CAR_and_CDR
http://en.wikipedia.org/wiki/CAR_and_CDR

DISCUSSION 5B: SCHEME AND CALCULATOR Page 6
Note that when a pair is printed, the car and cdr element are separated by a period.

A common data structure that you build out of pairs is the list. A list is either the empty
list whose literal is ” (), also known as nil, another primitive, or it’s a cons pair where
the cdr is a list. (Note the similarity to R1ists!)

STk> ' ()

()

STk> nil

()

STk> (cons 1 (cons 2 nil))

(1 2)

STk> (cons 1 (cons 2 (cons 3 nil)))
(1 2 3)

Note that there are no dots here. That is because when a dot is followed by the left paren-
thesis, the dot and the left parenthesis are deleted; when a left parenthesis is deleted, its
matching right parenthesis is deleted also. You can check if a list is nil by using the nul11?
function.

A shorthand for writing out a list is:

STk> " (1 2 3)

(1 2 3)

STk> ' (define (square x) (* xX X))
(define (square x) (*x xX X))

You might notice that the return value of the second expression looks a lot like Scheme
code. That’s because Scheme code is made up of lists. When you use the single quote,
you're telling Scheme not to evaluate the list, but instead keep it as just a list.

This is one of the reasons why Scheme is so cool — it can be defined within itself!

3.1 Questions

1. Define map where the first argument is a function and the second a list. This should
work like Python’s map.

(define (map fn 1lst)

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 5B: SCHEME AND CALCULATOR Page 7
2. Define reduce where the first argument is a function that takes two arguments, the
second a default value and the third a list. This should work like Python’s reduce.

(define (reduce fn s 1lst)

Calculator

In lecture, you saw how to implement the Calculator language using regular Python. The
Calculator is a Scheme-like language that can handle the four basic arithmetic operations.
These operations can be nested and can take varying numbers of arguments. Our goal
now is to prepare for Project 4 by understanding the pieces of the Calculator interpreter.

4.1 Representing Expressions

There are two kinds of expressions. A call expression is a Scheme list where the first
element is the operator and each of the remaining elements is an operand. A primitive
expression is an operator symbol or number. When we type a line at the Calculator
prompt and hit enter, we’ve just sent an expression to the interpreter.

To represent Scheme lists in Python, we’ll be using Pair objects. Pairs are just like the
Rlists you've come to know and love!

4.2 Questions

1. Translate the following Python representation of Calculator expressions into the proper
Scheme representation:

>>> Pair('+’, Pair(l, Pair (2, Pair (3, Pair (4, nil)))))

(+ 1 2 3 4)

>>> Pair(’'+’, Pair(’'1l’, Pair (Pair('*’, Pair (2, Pair(3, nil))),
nil)))

>>> Pair(’+’, Pair(Pair('*’, Pair(l, Pair(2, nil))), Pair(3, nil)))

2. Translate the following Calculator expression into calls to the Pair constructor:

> (+ 1 2 (- 3 4))

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 5B: SCHEME AND CALCULATOR Page 8
4.3 Evaluating and Applying

Evaluation discovers the form of an expression and executes the corresponding evalua-
tion rule.

Primitive expressions are evaluated directly. Call expressions are evaluated recursively
as we’ve seen before. First, evaluate the operator, then the operands left to right. Then,
collect their values as a list of arguments and apply the operator to those arguments.

If you refer to the minicalc.py file, you can see that all we’ve done in the calc_eval
function is follow the rules of evaluation that were just outlined! If the expression is
primitive (not a Pair), simply return it. Otherwise, evaluate the operands and apply the
operator to the evaluated operands.

We apply the operator with the calc_apply function, which is a dispatch function that
will dispatch on the operator name. Depending on what the operator is, we can match it
to a corresponding Python call. Each conditional clause above handles the application of
one operator.

One way to remember the two functions: calc_eval deals with expressions, whereas
calc_apply deals with values.

4.4 Questions

1. Suppose we typed each of the following expressions into the Calculator interpreter.
How many calls to calc_eval would they each generate? How about calc_apply?

> (+ 2 4 6 8)

> (+ 2 (» 4 (- 6 8)))

2. We also want to be able to perform division, asin (/ 4 2). Supplement the existing
code to handle this. If division by 0 is attempted, you should raise a ZeroDivision-
Error. (Hint: a helper function that does something like Python’s in operator for a
Scheme list may be helpful here!)

def scheme_in(elem, scheme_1lst):

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 5B: SCHEME AND CALCULATOR Page 9
def calc_apply (op, args):

if op == "/":

3. Alyssa P. Hacker and Ben Bitdiddle are also tasked with implementing the and oper-
ator,asin (and (= 1 2) (< 3 4)).Bensays this is easy: they just have to follow
the same process as in implementing » and /. Alyssa is not so sure. Who's right?

4. Now that you’ve had a chance to think about it, you decide to try implementing and
yourself. You may assume the conditional operators (e.g. <, >, =, etc) have already
been implemented for you.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

	Warmup — What Would Scheme Do?
	Evaluating Function Calls and Special Forms
	Functions
	Questions
	Special Forms
	Questions

	Lambdas, Environments and Defining Functions
	Questions

	Pairs and Lists
	Questions

	Calculator
	Representing Expressions
	Questions
	Evaluating and Applying
	Questions

