
MEMOIZATION, RECURSIVE DATA, AND SETS

4b
COMPUTER SCIENCE 61A

July 18, 2013

1 Memoization

Later in this class, you’ll learn about orders of growth and how to analyze exactly how
efficient (or inefficient) a function is. However, for now we’ll just tell you that many of the
naive implementations for recursive functions that we have used (i.e. recursive fib)
are actually very expensive in terms of time. Memoization provides a way for us to reduce
the expense of recursive functins. It works by storing the return value of our function as
they are computed. This way, if at some time we have to compute the return value with
an argument we have already seen, we can just return that value instead of spending the
time to compute it again. Here is an example of a function memo that takes a function and
returns a memoized version of it.

def memo(f):
"""Return a memoized version of single-argument function f."""
cache = {}
def memoized(n):

if n not in cache:
cache[n] = f(n)

return cache[n]
return memoized

Is there a trade off? Memoization requires space to store values that have already been
computed. For large n, this means a lot of stored values, which equates to a lot of used
space. So, we can describe the relationship between space and time as an inverse relation-
ship. If we want our functions to use less time, we’ll have to use more space, while if we
want our functions to use less space, we’ll have to wait longer.

1

DISCUSSION 4B: MEMOIZATION, RECURSIVE DATA, AND SETS Page 2
1.1 Questions

1. List three recursive functions that would benefit from being memoized. (Hint: Think
back to the recursive functions you’ve implemented in homeworks, labs, and discus-
sion)

2. Our current memoization function only works with functions that take one argument.
How could we make a simple to change to allow it to work with functions that have
an arbitrary number of arguments?

3. Give an example of when using a memoized fib recursive would be faster than
using fib iter to compute the 1000th fibonacci number.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 4B: MEMOIZATION, RECURSIVE DATA, AND SETS Page 3

2 Recursive Lists

We’ve already seen Rlists implemented as recursive pairs, and we’ve drawn box-and-
pointer representing their structure. What we’ll go through today is an object implemen-
tation.

Here is the the code to implement an OOP verision of an Rlist.

class Rlist(object):
"""A recursive list consisting of

a first element and the rest."""

empty = False

def __init__(self, first, rest=None):
if first == None:

self.empty = True
elif rest == None:

rest = Rlist(None)
self.first = first
self.rest = rest

def __repr__(self):
args = repr(self.first)
if not self.rest.empty:

args += ’, {0}’.format(repr(self.rest))
return ‘Rlist({0})’.format(args)

def __len__(self):
if empty:

return 0
return 1 + len(self.rest)

def __getitem__(self, i):
if i == 0:

return self.first
return self.rest[i-1]

We can construct an Rlist like so:

s = Rlist(1, Rlist(2, Rlist(3)))

For a given Rlist s, remember that it has two main attributes:

• s.first: the actual item stored in the current index of the Rlist

• s.rest: the rest of the Rlist sequence, represented recursively as another Rlist

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 4B: MEMOIZATION, RECURSIVE DATA, AND SETS Page 4
In our implementation, we can construct empty rlists by passing the Rlist constructor
None. Each Rlist has an instance attribute empty that stores whether or not the Rlist is
empty. This attribute defaults to false for all Rlists, unless the Rlist is constructed using
None as a paramater.

>>> empty_rlist = Rlist(None)
>>> empty_rlist.empty
True

2.1 Questions

1. Write a function pop rlist that takes an Rlist and index, and pops off the value at
that index. Note: if pop is called with no index, it should default to the front.

>>> s = Rlist(4, Rlist(2, Rlist(3)))
>>> pop_rlist(s, 1)
2
>>> s
Rlist(4, Rlist(3))
>>> s.pop(s)
4
>>> s
Rlist(3)

def pop_rlist(s, index=0):

2. Write a function push rlist that takes an Rlist and index, and pushes a value onto
the front of it.

>>> s = Rlist(2, Rlist(4, Rlist(1)))
>>> push_rlist(s, 9)
>>> s
Rlist(9, Rlist(2, Rlist(4, Rlist(1))))

def push_rlist(s, value)

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 4B: MEMOIZATION, RECURSIVE DATA, AND SETS Page 5

3. Selection sort is a sorting algorithm that works by finding the largest element of a
list, placing it with the element in the first index, then recursively sorting the rest of
the list. Write a function selection sort rlist that will perform an selection sort
on an rlist. Hint: you may want to define a function get largest element index. You
also may find the functions pop rlist and insert rlist that have already been
defined. earlier useful.

def insert_rlist(rlist, value, index):
if index == 0:

rlist.rest = Rlist(rlist.first, rlist.rest)
rlist.first = value

elif rlist.rest.empty:
print(’Index out of bounds’)

else:
insert(rlist.rest, value, index - 1)

def selection_sort_rlist(s):
"""
>>> s = Rlist(3, Rlist(4, Rlist(5, Rlist(2))))
>>> selection_sort_rlist(s)
>>> s
Rlist(5, Rlist(4, Rlist(3, Rlist(2))))

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 4B: MEMOIZATION, RECURSIVE DATA, AND SETS Page 6
4. Define a function rlist fixer that takes in poorly constructed Rlist and fixes them,

preserving the order of the elements.

def rlist_fixer(s):
"""
>>> s = Rlist(3, Rlist(Rlist(4, Rlist(5)), Rlist(4)))
>>> s
Rlist(3, Rlist(Rlist(4, Rlist(5)), Rlist(4)))
>>> rlist_fixer(s)
>>> s
Rlist(3, Rlist(4, Rlist(5, Rlist(4))))

3 Sets

Now we’re gonna add to the list of built-in Python containers that you already know. As
a refresher, you have used list, tuples, and dictionaries and containers for storing various
things. A set is a python container, which looks visually in Python like the offspring of a
dictionary and list. We use the same notation that is used in math to denote a set, which
are curly braces. In Python, sets are unordered collections, so the printed ordering may
differ from the element ordering in the set literal.

>>> my_set = {3, 5, 4, 7, 4, 9, 5, 3}
>>> my_set
{3, 4, 5, 6, 9}

Like the other containers we’ve already worked with, Python sets support various oper-
ations.
We can find the length of set.

>>> len(my_set)
5

We can test membership.

>>> 9 in s
True

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 4B: MEMOIZATION, RECURSIVE DATA, AND SETS Page 7
We can even do fancy things like union and intersect.

>>> my_set.union({1, 2, 7, 8})
{1, 2, 3, 4, 5, 6, 7, 8}
>>> my_set.intersection({1, 2, 3})
{3}

3.1 Questions

1. Define a function split set that takes in a set and a pivot, and splits the set into
two subsets. One subset is for elements smaller than the pivot, and the second is for
the elements greater than or equal to the pivot. Return the two subsets in a list where
the first element is set of values smaller than the pivot and the second set is the set of
values greater than or equal to the pivot. Hint: sets support the operators pop which
will remove and return an arbitrary element from a set and add which will add an
element to a set.

def split_set(s, pivot):
"""
>>> s = {1, 2, 3, 4}
>>> split_set(s, 3)
[{1, 2}, {3, 4}]

2. Now that you have seen Python’s built in set, let’s implement our own version! Fill
in the definition for a Set class with the supported operations using whatever imple-
mentation you like. However, you are not allowed to use Python’s built in sets!

class Set(Object):

def __init__(self, elements=[]):
For our constructor, we can give it a list of
initial elements, or just initialize an empty set.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 4B: MEMOIZATION, RECURSIVE DATA, AND SETS Page 8
def __len__(self):
returns the length of the set

def add(self, elem):
adds an element to the set

def remove(self, elem):
adds an element to the set

def pop(self):
pops a random element off the set

def contains(self, value):
returns whether or not the set contains a value

def union(self, s):
unions this set object with another set s
after running this function s can be empty or remain the same

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 4B: MEMOIZATION, RECURSIVE DATA, AND SETS Page 9

def intersect(self, s):
intersects this set object with another set s
again, s can be empty or unchanged

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

