OBJECT ORIENTED PROGRAMMING

COMPUTER SCIENCE 61A

July 11, 2013

Overview

This week, you were introduced to the programming paradigm known as Object Oriented
Programming. If you've programmed in a language like Java or C++, this concept should
already be familiar to you.

Object oriented programming (OOP) is heavily based on the idea of data abstraction.
Think of objects as how you would an object in real life.

For our example, let’s think of your laptop. First of all, it must have gotten its design
from somewhere and that blueprint is called a class. The laptop itself is an instance
of that class. If your friend has the same laptop as you, those laptops are just different
instances of the same class.

Now, your laptop does stuff (turn on, display text, etc). Those are called methods. It
also has properties (screen resolution, how much memory it has, that scratch mark you
hope no one else sees). Those are called variables. If it’s a variable that’s the same for all
instances, it’s called a class variable. So, if you were wondering how many instances of
your laptop exists, that would be a class variable because no matter which instance got
asked that, it would be the same. If you were wondering how many scratches your laptop
has, that’s an instance variable because that number depends on each instance. Variables
and methods are called attributes.

So, that’s the vocabulary of OOP (yes, people say that- it’s quite fun!). As a bonus
warmup, you should say it too.

Di1sCUSSION 3B: OBJECT ORIENTED PROGRAMMING Page 2
1.1 Defining a Class

When defining a class, we use the following syntax:

class OurClass (ParentClass) :
"""pDefinition of class here (methods and class variables)."""

Where OurClass is the name of the new class and ParentClass is the name of the class
it inherits from (we’ll talk more about inheritance later).

1.2 Defining a Method

To define a method, we write it almost exactly the same way as when we define functions
but the first argument we always include is se1f, which we use to refer to the instance
we used to call the method.

class OurClass (ParentClass) :
def class_method(self, arg):
"""function body goes here"""

1.3 Using a Class or Its Attributes

Finally, to use a class or instance’s attributes, we use “dot notation”, which is aptly named
for the use of the magic dot. The dot asks the class for the value of the attribute. So, if
we have a method or variable, bar, of a class or instance, foo, we access it by saying:
“foo.bar” which says “Almighty foo class, what is the value of the attribute bar?”

class OurClass (ParentClass) :
bar = "Fruit Bar" #class attribute

def = init_ (self, bar_name):

self.bar = bar_name #instance attribute
def class_method(self, arg):

"r"rfunction body goes here"""
def class_method2 (self):

"""function body goes here"""

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 3B: OBJECT ORIENTED PROGRAMMING Page 3
1.4 Skittles Example

As a starting example, consider the classes Skittle and Bag, which is used to represent
a single piece of Skittles candy and a bag of Skittles respectively.

class Skittle (object):
"mrap Skittle object has a color to describe it."""
def _ init_ (self, color):
self.color = color

class BRag(object) :
""r"A Bag is a collection of skittles. All bags share the number
of Bags ever made (sold) and each bag keeps track of its skittles
in a 1ist.

mmn

number_sold = 0

def init_ (self):
self.skittles = ()
Bag.number_sold += 1

def tag_line(self):
"""print the Skittles tag line."""
print ("Taste the rainbow!")

def print_bag(self):
print (tuple(s.color for s in self.skittles))

def take_skittle(self):
"""Take the first skittle in the bag (from the front of the
skittles 1ist).
skittle_to_eat = self.skittles[0]
self.skittles = self.skittles[1l:]
return skittle_to_eat

def add_skittle(self, s):
""U"Add a skittle to the bag."""
self.skittles += (s,)

In this example, we have the variable number_sold, which is a class variable. Also, you
see this strange method called __init__. That is called when you make a new instance of
the class. So, if you write a = Bag (), that makes a new instance of the Bag class (calling

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 3B: OBJECT ORIENTED PROGRAMMING Page 4
—-init__to doso) and then returns the self variable, which you can think of as a dictio-
nary that holds all of the attributes of the object.

To make a new class variable, you use the name of the class with dot notation: Bag.new_var
= 10 makes a new class variable new_var in the Bag class and assigns it the value of 10.
To make a new instance variable, you use the name of the instance variable: a.new_var2

= 10. Variable lookup works similarly to environment diagrams. You look to see if the
instance variable has the variable name. If it doesn’t, then you look in the list of class
variables.

Dots, Methods and Currying... oh my!

In a class method, you probably noticed that the first argument is always this mysterious
”selt”. And somehow, we never seem to have to pass in the argument ”“self” when we’re
calling it. This is the power of the magic dot. It tells us that “self” is the instance that’s
before the dot. However, if it happens to be the name of the class, then it’s the method
itself and ”self” isn’t an automatic argument.

As to what this has to do with currying.... try the questions and see. Let’s start with the
Skittles and Bag classes above.

1. Consider the following code and fill in what Python would print out.

>>> bagl = Bag()
>>> def curried(f):
def outer (instance) :
def inner (xargs):
return f (instance, =xargs)
return inner
... return outer
>>> add_binding = curried(Bag.add_skittle)
>>> bagl_add = add_binding(bagl)
>>> bagl.print_bag/()

>>> bagl.add_skittle (Skittle ("blue"))
>>> bagl.print_bag/()

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 3B: OBJECT ORIENTED PROGRAMMING Page 5
>>> bagl_add(Skittle ("red"))
>>> bagl.add_skittle (Skittle("green"))
>>> bagl_add(Skittle ("red"))
>>> bagl.print_bag/()
>>> s = bagl.take_skittle()
>>> bag2 = Bag()
>>> bagZ2_add = add_binding (bag2)
>>> bag2.print_bag()
>>> bag2_add(Skittle ("blue"))
>>> bagl.print_bag/()
>>> bag2.print_bag/()
Questions

1. What does Python print for each of the following:

>>>
>>>

>>>
>>>

>>>
>>>
>>>
>>>

>>>
>>>

>>>

amirs_bag = Bag()
amirs_bag.print_bag()

amirs_bag.add_skittle (Skittle ("blue"))

amirs_bag.print_bag()

amirs_bag.add_skittle (Skittle ("red"))
amirs_bag.add_skittle (Skittle("green"))
amirs_bag.add_skittle (Skittle("red"))

amirs_bag.print_bag()

s = amirs_bag.take_skittle()
print (s.color)

amirs_bag.number_sold

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

Di1SCUSSION 3B: OBJECT ORIENTED PROGRAMMING

Page 6

>>>

>>>
>>>

>>>

>>>

>>>

>>>

2. What type of variable is skittles? What type of variable is number sold?

Bag.number_sold

soumyas_bag = Bag ()
soumyas_bag.print_bag()

amirs_bag.print_bag()

Bag.number_sold

soumyas_bag.number_sold

amirs_bag.number_sold

3. Write a new method for the Bag class called take_color, which takes a color and
removes (and returns) a skittle of that color from the bag. If there is no skittle of that
color, then it returns None.

def take_color(self, color):

CS61A Summer 2013: Steven Tang and Eric Tzeng, with

Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 3B: OBJECT ORIENTED PROGRAMMING Page 7

4. Write a new method for the Bag class called take_all, which takes all the skittles in

the current bag and prints the color of the skittle every time a skittle is taken from the
bag.

def take_all (self):

5. We now want to write three different classes: Postman, Client, and Email to sim-
ulate email. Fill in the definitions below to finish the implementation.

class Email (object) :
""'"Every email object has 3 instance variables: the message, the
sender (their name), and the addressee (the destination’s name).

mmn

def _ init_ (self, msg, sender, addressee):

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

Di1SCUSSION 3B: OBJECT ORIENTED PROGRAMMING
class Postman (object) :

Page 8

"""Each Postman has an instance variable clients,

which is a
dictionary that associates client names with client objects.
mmn

def init__ (self):
self.clients

= dict ()

def send(self, email):

"""Take an email and put it in the inbox of the client it 1is

addressed to."""

def register_client (self, client,

client_name) :
"""Takes a client object and client_name and adds it to the
clients instance variable.

mmn

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 3B: OBJECT ORIENTED PROGRAMMING Page 9
class Client (object) :
""'"Every Client has instance variables name (which is used
for addressing emails to the client), mailman (which 1is

used to send emails out to other clients), and inbox (a
list of all emails the client has received).
def init_ (self, mailman, name):

self.inbox = list ()

def compose(self, msg, recipient):
""r"Send an email with the given message msg to the given
recipient."""

def receive(self, email):
""nTake an email and add it to the inbox of this client.

mmn

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

