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1 Newton’s Method

Newton’s method is an algorithm that is widely used to compute the zeros of functions.
It can be used to approximate a root of any continuous, differentiable function.

Intuitively, Newton’s method works based on two observations:

• At a point P = (x, f(x)), a root of the function f is in the same direction relative to
P as the root of the linear function L that not only passes through P , but also has the
same slope as f at that point.

• Over any very small region, we can approximate f as a linear function. This is one of
the fundamental principles of calculus.

Starting at an initial guess (x0, f(xo)), we estimate the function f as a linear function L,
solve for the zero (x′, 0) of L, and then use the point (x′, f(x′)) as the new guess for the
root of f . We repeat this process until we have determined that (x′, f(′x)) is a zero of f .

Mathematically, we can derive the update equation by using two different ways to write
the slope of L:

Let x be our current guess for the root, and x∗ be the point we want to update our guess
to. Let L be the linear function tangent to f at (x, f(x)).

Remember that x∗ is the root of L. So, we know two points L passes through, namely
(x, f(x)) and (x∗, 0).

We can write the slope of L as

L′(x) =
0− f(x)

x∗ − x
=
−f(x)
x∗ − x

(1)
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We also know that L is tangent to f as x, so:

L′(x) = f ′(x) (2)

We can equate these to get our update equation:

−f(x)
x∗ − x

= f ′(x)⇒ x∗ = x− f(x)

f ′(x)
(3)

We know f(x), and from calculus, for some very small ε:

f ′(x) =
f(x+ ε)− f(x)

(x+ ε)− x
=

f(x+ ε)− f(x)

ε
(4)

From the above, we get this algorithm:

def approx_deriv(fn, x, dx=0.00001):
return (fn(x+dx)-fn(x))/dx

def newtons_method(fn, guess=1, max_iterations=100):
ALLOWED_ERROR_MARGIN = 0.0000001
i = 1
while abs(fn(guess)) > ALLOWED_ERROR_MARGIN and i <= max_iterations:

guess = guess - fn(guess) / approx_deriv(fn, guess)
i += 1

return guess

We can generalize this idea into a framework known as iterative improvement. Basically,
you start out by guessing a value, and then continuously update the guess until it is a
reasonable approximation of the value we are looking for. Here is an implementation for
iter improve. The update function takes the current guess, and returns an updated
guess. The isdone function also takes the current guess, and returns True if and only if
the current guess is “good enough”, according to some set criterion.

def iter_improve(update, isdone, guess=1, max_iterations=100):
i = 1
while not isdone(guess) and i <= max_iterations:

guess = update(guess)
i += 1

return guess

def newtons_method2(fn, guess=1, max_iterations=100):
def newtons_update(guess):

return guess - fn(guess) / derivative(fn, guess)
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def newtons_isdone(guess):

ALLOWED_ERROR_MARGIN= 0.0000001
return abs(fn(guess)) <= ALLOWED_ERROR_MARGIN

return iter_improve(newtons_update,
newtons_isdone,
max_iterations)

1. Write a function cube root that computes the cube root of the input number x.
(Hint: Use newtons methodwith a function that is zero at the cube root of the input.)

def cube_root(x):

2. Newton’s method converges very slowly (or not at all) if the algorithm happens to
land on a point where the derivative is very small. Modify the implementation that
uses iter improve to return None if the derivative is under some threshold, say
0.001.

def newtons_method2(fn, guess=1, max_iterations=100):
def newtons_update(guess, min_size=0.001):

def newtons_done(guess):

return iter_improve(newtons_update, newtons_done, guess,
max_iterations)

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu



DISCUSSION 2A: NEWTON’S METHOD, AND RECURSION Page 4

2 Recursion

A function is recursive if it calls itself. Below is recursive factorial function.

def factorial(n):
if n == 0 or n == 1:

return 1
else:

return n * factorial(n-1)

It seems like this won’t work – we haven’t finished defining factorial, yet we’re al-
ready calling it. However, we do have one base case: when n is 0 or 1. Now we can
compute factorial(1) in terms of factorial(0), and factorial(2) in terms of
factorial(1), and factorial(3) – well, you get the idea.

There are three common steps in a recursive definition:

1. Figure out your base case: Ask yourself, ”what is the simplest argument I could possi-
bly get?” The answer should be simple, and is often given by definition. For example,
factorial(0) is 1, by definition, or the first two Fibonacci numbers are 0 and 1.

2. Make a recursive call with a simpler argument: Simplify your problem, and assume that a
recursive call for this new problem will simply work. This is called the “leap of faith”
– as you use more recursion, you will get more used to this idea. For factorial,
we make the recursive call factorial(n-1) – this is the recursive breakdown.

3. Use your recursive call to solve the full problem: Remember that we are assuming your
recursive call just works. With the result of the recursive call, how can you solve the
original problem you were asked? For factorial, we just multiply (n− 1)! by n.
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2.1 Cool Questions!

1. Print out a countdown using recursion.

def countdown(n):
"""
>>> countdown(3)
3
2
1
"""

2. Is there an easy way to change countdown to count up instead?

3. Write a procedure expt(base, power), which implements the exponent function.
For example, expt(3, 2) returns 9, and expt(2, 3) returns 8. Use recursion.

def expt(base, power):

4. Write sum primes up to(n), which sums up every prime up to and including n.
Assume you have an isprime() predicate.

def sum_primes_up_to(n):
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5. Now write sum filter up to(n, pred), which is a general version that adds all

integers 1 through n that satisfy the argument pred.

def sum_filter_up_to(n, pred):

3 Tree Recursion

Consider a function that requires more than one recursive call. A simple example is a
function that computes Fibonacci numbers:

def fib(n):
if n == 0:

return 0
elif n == 1:

return 1
else:

return fib(n - 1) + fib(n - 2)

This is where recursion really begins to shine: it allows us to explore two different calcula-
tions at the same time. In this case, we are exploring two different possibilities (or paths):
the n − 1 case and the n − 2 case. With the power of recursion, exploring all possibilities
like this is very straightforward. You simply try everything using recursive calls for each
case, then combine the answers you get back.

This type of recursion is called tree recursion, because the different branches of computa-
tion that form from this recursion end up looking like an upside-down tree:

fib(4)

fib(2)fib(3)

fib(1)fib(2)

We could, in theory, use loops to write the same procedure. However, problems that are
naturally solved using tree recursive procedures are generally difficult to write iteratively,
and require the use of additional data structures to hold information. As a general rule
of thumb, whenever you need to try multiple possibilities at the same time, you should
consider using tree recursion.
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3.1 Exercises

1. I want to go up a flight of stairs that has n steps. I can either take 1 or 2 steps each
time. How many different ways can I go up this flight of stairs? Write a function
count stair ways that solves this problem for me.

def count_stair_ways(n):

2. Pascal’s triangle is a useful recursive definition that tells us the coefficients in the
expansion of the polynomial (x + a)n. Each element in the triangle has a coordinate,
given by the row it is on and its position in the row (which you could call its column).
Every number in Pascal’s triangle is defined as the sum of the item above it and the
item that is directly to the upper left of it. If there is a position that does not have an
entry, we treat it as if we had a 0 there. Below are the first few rows of the triangle:

Item: 0 1 2 3 4 5
Row 0: 1
Row 1: 1 1
Row 2: 1 2 1
Row 3: 1 3 3 1
Row 4: 1 4 6 4 1
Row 5: 1 5 10 10 5 1
...

Define the procedure pascal(row, column) which takes a row and a column, and
finds the value at that position in the triangle. Don’t use the closed-form solution, if
you know it.

def pascal(row, column):

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu



DISCUSSION 2A: NEWTON’S METHOD, AND RECURSION Page 8
3. The TAs want to print handouts for their students. However, for some unfathomable

reason, both the printers are broken; the first printer only prints multiples of n1, and
the second printer only prints multiples of n2. Help the TAs figure out whether or
not it is possible to print an exact number of handouts!

def hasSum(sum, n1, n2):
"""
>>> hasSum(1, 3, 5)
False
>>> hasSum(5, 3, 5) # 1(5) + 0(3) = 5
True
>>> hasSum(11, 3, 5) # 2(3) + 1(5) = 11
True
"""

4 Mutual Recursion

Sometimes it isn’t enough to have one function call itself; sometimes functions recursively
call one another! Here is an example:

def even(n):
if n == 0:

return True
return odd(n - 1)

def odd(n):
if n == 0:

return False
return even(n - 1)

Given a positive integer, the function even will return a boolean value representing
whether or not the integer is even. However, notice that the recursive call is to odd,
not itself. We call this mutual recursion because because even and odd are defined in
terms of one another, and as a result alternatively call one another to arrive at the answer.

Mutual recursion is especially useful for when you need to deal with different data struc-
tures that interact with one another. We’ll see this later in the semester with Trees.
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4.1 Exercises

1. Let’s answer the age-old question of ”What came first, the chicken or the egg?” Each
function takes an argument (pun unintended!), which is a boolean value that repre-
sents an argument for whether or not the corresponding element came first. To mirror
the debate, let’s do this:

def chicken(argument=True):
print("Chickens!")
return egg(argument)

def egg(argument=True):
print("Eggs!")
return chicken(argument)

We could argue that chickens came first by calling chicken(), but then the argument
would never be resolved. That’s unfortunate! Therefore, let’s also add generations,
which is a variable that represents which generation we are on. For example, if you
argue for the 5th generation chicken, you’re arguing for not the 4th generation egg.
The 0th generation determines the winner.

def chicken(argument, generations=0):
""" Argue whether or not the chicken came first.
>>> chicken(True)
[Insert reason chickens came first.]
>>> chicken(False) # is equivalent to egg(True)
[Insert reason eggs came first.]
>>> chicken(False, 1) # is equivalent to egg(True, 0)
[Insert reason eggs came first.]
"""

def egg(argument, generations=0):
"Argue whether or not the egg came first."""

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu



DISCUSSION 2A: NEWTON’S METHOD, AND RECURSION Page 10

5 Iteration vs. Recursion

We’ve written factorial recursively. Let’s compare the iterative and recursive versions:

def factorial_recursive(n):
if n <= 0:

return 1
else:

return n * factorial_recursive(n-1)

def factorial_iterative(n):
total = 1
while n > 0:

total = total * n
n = n - 1

return total

Notice that the recursive test corresponds to the iterative test. While the recursive func-
tion “works” until n is less than or equal to 0, the iterative “works” while n is greater than
0. They are essentially the same.

Let’s also compare fibonacci.

def fib_r(n):
if n == 1:

return 0
elif n == 2:

return 1
else:

return fib_r(n - 1) + fib_r(n - 2)

def fib_i(n):
curr, next = 0, 1
while n > 1:

curr, next = next, curr + next
n = n - 1

return curr

For the recursive version, we copied the definition of the Fibonacci sequence straight into
code! The nth fibonacci number is literally the sum of the two before it. Iteratively, you
need to keep track of more numbers and have a better understanding of the code.

Sometimes code is easier to write iteratively, sometimes code is easier to write recursively.
Have fun experimenting with both!
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6 Extra Practice Problems

1. Recall the hailstone function from homework 1. You pick a positive integer n as the
start. If n is even, divide it by 2. If n is odd, multiply it by 3 and add 1. Repeat this
process until n is 1. Write a recursive version of hailstone that prints out the values of
the sequence and returns the number of steps.

def hailstone(n):

2. In homework 2 you encountered the repeated function, which takes arguments f and
n and returns a function equivalent to the nth repeated application of f. This time,
we want to write repeated recursively. You’ll want to use compose1, given below for
your convenience:

def compose1(f, g):
"""Return a function h, such that h(x) = f(g(x))."""
def h(x):

return f(g(x))
return h
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3. The greatest common divisor of two positive integers a and b is the largest integer

which evenly divides both numbers (with no remainder). Euclid, a Greek mathemati-
cian in 300 BC, realized that the greatest common divisor of a and b is the smaller
value if it evenly divides the larger value or the same as the greatest common divi-
sor of the smaller value and the remainder of the larger value divided by the smaller
value. So if a is greater than b and a is not divisible by b then:

gcd(a, b) == gcd(b, a % b)

Write the gcd function using Euclid’s algorithm. Try coming up with a recursive and
an iterative solution.

4. Consider an insect in a MxN grid. The insect starts at the top left corner, (0,0), and
wants to end up at the bottom right corner, (M-1,N-1). The insect is only capable
of moving right or down. Write a function count paths that takes a grid length
and width and returns the number of different paths the insect can take from the
start to the goal. [There is an analytic solution to this problem, but try to answer it
procedurally using recursion].

For example, the 2x2 grid has a total of two ways for the insect to move from the start
to the goal. For the 3x3 grid, the insect has 6 different paths (only 3 are shown above).

def paths(x, y):
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