
HIGHER ORDER FUNCTIONS & ENVIRONMENT

DIAGRAMS 1b
COMPUTER SCIENCE 61A

June 27, 2013

1 Warmup Questions

1. Describe what the following function does and how it works.

def mystery(n):
k = 2
while k < n:

if n % k == 0:
return False

k += 1
return True

This function works, but looping k all the way to n is inefficient. Can you think of a
better point to stop?

1

DISCUSSION 1B: HIGHER ORDER FUNCTIONS & ENVIRONMENT DIAGRAMS Page 2
2. Fill in the following function, which generates the nth prime number. For example,

the 2nd prime number is 3, the 5th prime number is 11, and so on.

Hint: you can use the function from question 1.

def nth_prime(n):

What is a simple way to modify nth prime so that it prints a sequence of primes up to
the nth prime?

3. The Fibonacci sequence is a famous sequence in mathematics where each term is gen-
erated by adding the two previous terms: 0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, Using a
while loop, write a function that would find the nth Fibonacci number. For example,
the 4th number would be 2 and the 6th number would be 5.

def nth_fibo(n):

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 1B: HIGHER ORDER FUNCTIONS & ENVIRONMENT DIAGRAMS Page 3

2 Environment Diagrams

Environment diagrams will feature prominently in CS 61A, so here is one to try for prac-
tice. Environment diagrams can help you understand difficult coding problems, and also
give you an idea of what’s happening inside the interpreter.

Write the environment diagram for the following code:

>>> from operator import add
>>> def curry2(f):
... def g(x):
... def h(y):
... return f(x,y)
... return h
... return g
>>> make_adder = curry2(add)
>>> add_three = make_adder(3)
>>> five = add_three(2)

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 1B: HIGHER ORDER FUNCTIONS & ENVIRONMENT DIAGRAMS Page 4

3 Higher-Order Functions

A function that manipulates other functions as data is called a higher-order function (HOF).
For instance, a HOF can be a function that takes functions as arguments, returns a function
as its value, or both.

4 Functions as Argument Values

Suppose we want to square or double every natural number from 1 to n and print the re-
sult as we go. Using the functions square and double, each of which are one-argument
functions that do as their names imply, fill out the following:

def square_every_number(n):

def double_every_number(n):

Note that the only difference between square every number and double every number
is simply which function we call on the numbers. It would be nice to generalize functions
of this form. When we pass in the number, couldn’t we also specify the function we apply
to each number less than n?

To do that, we define a higher-order function called every. every takes in the function
you want to apply to each number, and applies it to n natural numbers, starting from 1.
We can rewrite square every number and double every number:

def square_every_number(n):
every(square, n)

def double_every_number(n):
every(double, n)

Note: These functions are not pure – as defined below, every will actually print values to
the screen.

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 1B: HIGHER ORDER FUNCTIONS & ENVIRONMENT DIAGRAMS Page 5
4.1 Questions

1. Now implement the function every that takes in a function func and a number n,
and applies func to the first n numbers from 1, printing the results along the way:

def every(func, n):

2. Similarly, implement the function keep, which takes in a function predicate cond and
a number n, and only prints numbers from 1 to n to the screen if they fulfill cond:

def keep(cond, n):

5 Functions as Return Values

This problem comes up often: write a function that, given something, returns a function
that does something else. To create this sort of higher-order function, we define another
function inside the original function, and then return it:

def my_wicked_function(blah):
def my_wicked_helper(more_blah):

...
return my_wicked_helper

5.1 Moar Questions

1. Write and add one, which takes a one-argument function f. and add one should
return yet another one-argument function that returns 1 plus the result of calling f.

def and_add_one(f):

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 1B: HIGHER ORDER FUNCTIONS & ENVIRONMENT DIAGRAMS Page 6
2. Write a function and add that takes a function f and a number n as arguments. It

should return a function that takes one argument, and does the same thing as the
function argument, except adds n to the result.

def and_add(f, n):

3. The following code has been loaded into the Python interpreter:

def skipped(f):
def g():

return f
return g

def composed(f, g):
def h(x):

return f(g(x))
return h

def added(f, g):
def h(x):

return f(x) + g(x)
return h

def square(x):
return x*x

def two(x):
return 2

What will Python output when the following lines are evaluated?

>>> composed(square, two)(7)

>>> skipped(added(square, two))()(3)

>>> composed(two, square)(2)

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

DISCUSSION 1B: HIGHER ORDER FUNCTIONS & ENVIRONMENT DIAGRAMS Page 7
4. Python represents a programming community, and for things to run smoothly, there

are some standards to keep things consistent. The following is the recommended
style for documentation so that collaboration with other Python programmers be-
comes standard and easy. Write your code at the very end, using accumulate from
homework:

def square(x):
return x * x

def lazy_accumulate(f, start, n, term):
"""Returns a one-argument function, h(m). h, when called,
returns the first n + m terms of the sequence defined by
TERM.

PARAMETERS:
f -- the function for the first set of numbers.
start -- the value to combine with the first value

in the sequence.
n -- the stopping point for the first set of

numbers.
term -- function to be applied to each number

before combining.

RETURNS:
A function h(m), where m is the number of additional
values to combine.

>>> # The following does
>>> # 12 + (1*1 + 2*2 + 3*3) + (4*4 + 5*5)
>>> lazy_accumulate(add, 12, 3, square)(2)
67
"""

CS61A Summer 2013: Steven Tang and Eric Tzeng, with
Rohan Chitnis, Brian Hou, Andrew Huang, Robert Huang, Jeffrey Lu, Leonard Truong, Mark Miyashita,
and Albert Wu

