
CS61A Lecture 32

Amir Kamil
UC Berkeley
April 5, 2013

 Hog revisions due Monday

 HW10 due Wednesday

 Make sure to fill out survey on Piazza
We need to schedule alternate final exam times for those

who have a conflict, so if you do, let us know on the survey
when you are available

Announcements

The Begin Special Form

(define (repeat k fn)
 (if (> k 0)
 (begin (fn) (repeat (- k 1) fn))
 'done))

(define (tri fn)
 (repeat 3 (lambda () (fn) (lt 120))))

(define (sier d k)
 (tri (lambda () (if (= k 1) (fd d) (leg d k)))))

(define (leg d k)
 (sier (/ d 2) (- k 1)) (penup) (fd d) (pendown))

(begin <exp1> <exp2> ... <expn>)

Begin expressions allow sequencing

Handling Errors (Back to Python)

Sometimes, computers don't do exactly what we expect
• A function receives unexpected argument types
• Some resource (such as a file) is not available
• A network connection is lost

September 9 1947: Moth found in a Mark II Computer

Exceptions

A built-in mechanism in a programming language to declare and
respond to exceptional conditions

Python raises an exception whenever an error occurs

Exceptions can be handled by the program, preventing a crash

Unhandled exceptions will cause Python to halt execution

Exceptions are objects! They have classes with constructors

They enable non-local continuations of control:

If f calls g and g calls h, exceptions can shift control from h to f
without waiting for g to return

However, exception handling tends to be slow

Mastering exceptions:

Assert Statements

Assert statements raise an exception of type AssertionError

assert <expression>, <string>

Assertions are designed to be used liberally and then disabled in
production systems

python3 -O

"O" stands for optimized. Among other things, it disables
assertions

Whether assertions are enabled is governed by the built-in bool
__debug__

Raise Statements

Exceptions are raised with a raise statement

raise <expression>

<expression> must evaluate to an exception instance or class.

Exceptions are constructed like any other object; they are just
instances of classes that inherit from BaseException
TypeError -- A function was passed the wrong number/type of
argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RuntimeError -- Catch-all for troubles during interpretation

Try Statements

Try statements handle exceptions

Execution rule:
• The <try suite> is executed first;
• If, during the course of executing the <try suite>,

an exception is raised that is not handled otherwise, and
• If the class of the exception inherits from <exception class>, then
• The <except suite> is executed, with <name> bound to the

exception

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:
 x = 1/0
 except ZeroDivisionError as e:
 print('handling a', type(e))
 x = 0

handling a <class 'ZeroDivisionError'>
>>> x
0

Multiple try statements: Control jumps to the except suite of the
most recent try statement that handles that type of exception.

WWPD: What Would Python Do?

How will the Python interpreter respond?

>>> invert_safe(1/0)
>>> try:
 invert_safe(0)
 except BaseException:
 print('Handled!')

>>> inverrrrt_safe(1/0)

def invert(x):
 result = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return result

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

	CS61A Lecture 29
	Announcements
	The Begin Special Form
	Handling Errors (Back to Python)
	Exceptions
	Assert Statements
	Raise Statements
	Try Statements
	Handling Exceptions
	WWPD: What Would Python Do?

