
CS61A Lecture 23

Amir Kamil
UC Berkeley

March 15, 2013

 Ants project due Monday

 HW8 due next Wednesday at 7pm

 Midterm 2 next Thursday at 7pm
 Review session Sat. 3/16 at 2pm in 2050 VLSB
 Office hours Sun. 3/17 12-4pm in 310 Soda
 HKN review session Sun. 3/17 at 4pm in 145 Dwinelle
 See course website for more information

Announcements

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

add_rational mul_rational

Rational numbers as
numerators & denominators

add_complex mul_complex

Complex numbers as
two-dimensional vectors

How do we add a complex number
and a rational number together?

There are many different techniques for doing this!

Type Dispatching

Define a different function for each possible combination of
types for which an operation (e.g., addition) is valid
def iscomplex(z):
 return type(z) in (ComplexRI, ComplexMA)
def isrational(z):
 return type(z) is Rational
def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numerator / r.denominator,
 z.imag)
def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if iscomplex(z1) and iscomplex(z2):
 return add_complex(z1, z2)
 elif iscomplex(z1) and isrational(z2):
 return add_complex_and_rational(z1, z2)
 elif isrational(z1) and iscomplex(z2):
 return add_complex_and_rational(z2, z1)
 else:
 add_rational(z1, z2)

Converted to a
real number (float)

Tag-Based Type Dispatching

Idea: Use dictionaries to dispatch on type (like we did for
message passing)

def type_tag(x):
 return type_tags[type(x)]

type_tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

add_implementations = {}
add_implementations[('com', 'com')] = add_complex
add_implementations[('rat', 'rat')] = add_rational
add_implementations[('com', 'rat')] = add_complex_and_rational
add_implementations[('rat', 'com')] = add_rational_and_complex

lambda r, z: add_complex_and_rational(z, r)

Declares that ComplexRI
and ComplexMA should be

treated uniformly

Type Dispatching Analysis

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Question: How many cross-type implementations are required to
support m types and n operations?

def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Question: How many cross-type implementations are required to
support m types and n operations?

def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Question: How many cross-type implementations are required to
support m types and n operations?

def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Question: How many cross-type implementations are required to
support m types and n operations?

def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

integer, rational, real,
complex

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Question: How many cross-type implementations are required to
support m types and n operations?

def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

integer, rational, real,
complex

add, subtract, multiply,
divide

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

Type Dispatching

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type
functions as necessary, but use abstract data types

Extensible: Any new numeric type can "install" itself into the
existing system by adding new entries to various dictionaries

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

Message Passing

Type Dispatching

Data-Directed Programming

Data-Directed Programming

There's nothing addition-specific about add

Data-Directed Programming

There's nothing addition-specific about add

Idea: One dispatch function for (operator, types) pairs

Data-Directed Programming

There's nothing addition-specific about add

Idea: One dispatch function for (operator, types) pairs

 def apply(operator_name, x, y):
 tags = (type_tag(x), type_tag(y))
 key = (operator_name, tags)
 return apply_implementations[key](x, y)

Data-Directed Programming

There's nothing addition-specific about add

Idea: One dispatch function for (operator, types) pairs

 def apply(operator_name, x, y):
 tags = (type_tag(x), type_tag(y))
 key = (operator_name, tags)
 return apply_implementations[key](x, y)

apply_implementations = {
 ('add', ('com', 'com')): add_complex,
 ('add', ('rat', 'rat')): add_rational,
 ('add', ('com', 'rat')): add_complex_and_rational,
 ('add', ('rat', 'com')): add_rational_and_complex,
 ('mul', ('com', 'com')): mul_complex,
 ('mul', ('rat', 'rat')): mul_rational,
 ('mul', ('com', 'rat')): mul_complex_and_rational,
 ('mul', ('rat', 'com')): mul_rational_and_complex
 }

Coercion

Coercion

Idea: Some types can be converted into other types

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):
 return ComplexRI(x.numerator / x.denominator, 0)

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):
 return ComplexRI(x.numerator / x.denominator, 0)

coercions = {('rat', 'com'): rational_to_complex}

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):
 return ComplexRI(x.numerator / x.denominator, 0)

coercions = {('rat', 'com'): rational_to_complex}

Question: Can any numeric type be coerced into any other?

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):
 return ComplexRI(x.numerator / x.denominator, 0)

coercions = {('rat', 'com'): rational_to_complex}

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed
programming?

Applying Operators with Coercion

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:
 ty, y = tx, coercions[(ty, tx)](y)

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:
 ty, y = tx, coercions[(ty, tx)](y)
 else:

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:
 ty, y = tx, coercions[(ty, tx)](y)
 else:
 return 'No coercion possible.'

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:
 ty, y = tx, coercions[(ty, tx)](y)
 else:
 return 'No coercion possible.'
 assert tx == ty

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:
 ty, y = tx, coercions[(ty, tx)](y)
 else:
 return 'No coercion possible.'
 assert tx == ty
 key = (operator_name, tx)

Applying Operators with Coercion

1. Attempt to coerce arguments into values of the same type

2. Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):
 tx, ty = type_tag(x), type_tag(y)
 if tx != ty:
 if (tx, ty) in coercions:
 tx, x = ty, coercions[(tx, ty)](x)
 elif (ty, tx) in coercions:
 ty, y = tx, coercions[(ty, tx)](y)
 else:
 return 'No coercion possible.'
 assert tx == ty
 key = (operator_name, tx)
 return coerce_implementations[key](x, y)

Coercion Analysis

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type
coercion as necessary, but use abstract data types

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type
coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type
coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type
coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

 Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type
coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

 Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational
Rational Complex

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type
coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

 Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational
Rational Complex

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type
coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

 Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational
Rational Complex

Type Add Multiply
Complex
Rational

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type
coercion as necessary, but use abstract data types

Requires that all types can be coerced into a common type

More sharing: All operators use the same coercion scheme

 Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational
Rational Complex

Type Add Multiply
Complex
Rational

Closure Property of Data

Closure Property of Data

A tuple can contain another tuple as an element.

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

Closure Property of Data

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

 Recursive list representation of the sequence 1, 2, 3, 4:

Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

 Recursive list representation of the sequence 1, 2, 3, 4:

Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2

Recursive list representation of the sequence 1, 2, 3, 4:

Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2 3

Recursive list representation of the sequence 1, 2, 3, 4:

Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2 3 4

Recursive list representation of the sequence 1, 2, 3, 4:

Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2 3 4 None

Recursive list representation of the sequence 1, 2, 3, 4:

Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2 3 4 None

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.

Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2 3 4 None

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.

Nested pairs (old):

Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2 3 4 None

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.

(1, (2, (3, (4, None)))) Nested pairs (old):

Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2 3 4 None

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.

(1, (2, (3, (4, None)))) Nested pairs (old):

Rlist class (new):

Closure Property of Data

1

A tuple can contain another tuple as an element.

Pairs are sufficient to represent sequences.

2 3 4 None

Recursive list representation of the sequence 1, 2, 3, 4:

Recursive lists are recursive: the rest of the list is a list.

(1, (2, (3, (4, None))))

Rlist(1, Rlist(2, Rlist(3, Rlist(4))))

Nested pairs (old):

Rlist class (new):

Recursive List Class

Recursive List Class

class Rlist(object):

Recursive List Class

class Rlist(object):
 class EmptyList(object):

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __len__(self):

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __len__(self):
 return 1 + len(self.rest)

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __len__(self):
 return 1 + len(self.rest)
 def __getitem__(self, i):

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __len__(self):
 return 1 + len(self.rest)
 def __getitem__(self, i):
 if i == 0:

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __len__(self):
 return 1 + len(self.rest)
 def __getitem__(self, i):
 if i == 0:
 return self.first

Recursive List Class

class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __len__(self):
 return 1 + len(self.rest)
 def __getitem__(self, i):
 if i == 0:
 return self.first
 return self.rest[i - 1]

Recursive List Class

Methods can be recursive as well!
class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __len__(self):
 return 1 + len(self.rest)
 def __getitem__(self, i):
 if i == 0:
 return self.first
 return self.rest[i - 1]

Recursive List Class

Methods can be recursive as well!
class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __len__(self):
 return 1 + len(self.rest)
 def __getitem__(self, i):
 if i == 0:
 return self.first
 return self.rest[i - 1]

Yes, this call is
recursive

Recursive List Class

Methods can be recursive as well!
class Rlist(object):
 class EmptyList(object):
 def __len__(self):
 return 0
 empty = EmptyList()
 def __init__(self, first, rest=empty):
 self.first = first
 self.rest = rest
 def __len__(self):
 return 1 + len(self.rest)
 def __getitem__(self, i):
 if i == 0:
 return self.first
 return self.rest[i - 1]

Yes, this call is
recursive

There's the
base case!

Recursive Operations on Rlists

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call
on the rest of the list.

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend_rlist(s1, s2):

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend_rlist(s1, s2):
 if s1 is Rlist.empty:

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend_rlist(s1, s2):
 if s1 is Rlist.empty:
 return s2

Recursive Operations on Rlists

Recursive list processing almost always involves a recursive call
on the rest of the list.

>>> s = Rlist(1, Rlist(2, Rlist(3)))

>>> s.rest
Rlist(2, Rlist(3))

>>> extend_rlist(s.rest, s)
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3)))))

def extend_rlist(s1, s2):
 if s1 is Rlist.empty:
 return s2
 return Rlist(s1.first, extend_rlist(s1.rest, s2))

Map and Filter on Rlists

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
 if s is Rlist.empty:

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
 if s is Rlist.empty:
 return s

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 return Rlist(fn(s.first), map_rlist(s.rest, fn))

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):
 if s is Rlist.empty:

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):
 if s is Rlist.empty:
 return s

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):
 if s is Rlist.empty:
 return s
 rest = filter_rlist(s.rest, fn)

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):
 if s is Rlist.empty:
 return s
 rest = filter_rlist(s.rest, fn)
 if fn(s.first):

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):
 if s is Rlist.empty:
 return s
 rest = filter_rlist(s.rest, fn)
 if fn(s.first):
 return Rlist(s.first, rest)

Map and Filter on Rlists

We want operations on a whole list, not an element at a time.

def map_rlist(s, fn):
 if s is Rlist.empty:
 return s
 return Rlist(fn(s.first), map_rlist(s.rest, fn))

def filter_rlist(s, fn):
 if s is Rlist.empty:
 return s
 rest = filter_rlist(s.rest, fn)
 if fn(s.first):
 return Rlist(s.first, rest)
 return rest

	CS61A Lecture 23
	Announcements
	The Independence of Data Types
	Type Dispatching
	Tag-Based Type Dispatching
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Type Dispatching Analysis
	Data-Directed Programming
	Data-Directed Programming
	Data-Directed Programming
	Data-Directed Programming
	Data-Directed Programming
	Coercion
	Coercion
	Coercion
	Coercion
	Coercion
	Coercion
	Coercion
	Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Applying Operators with Coercion
	Coercion Analysis
	Coercion Analysis
	Coercion Analysis
	Coercion Analysis
	Coercion Analysis
	Coercion Analysis
	Coercion Analysis
	Coercion Analysis
	Coercion Analysis
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Closure Property of Data
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive List Class
	Recursive Operations on Rlists
	Recursive Operations on Rlists
	Recursive Operations on Rlists
	Recursive Operations on Rlists
	Recursive Operations on Rlists
	Recursive Operations on Rlists
	Recursive Operations on Rlists
	Recursive Operations on Rlists
	Recursive Operations on Rlists
	Recursive Operations on Rlists
	Recursive Operations on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists
	Map and Filter on Rlists

