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Announcements 



The Independence of Data Types 

Data abstraction and class definitions keep types separate 

Some operations need to cross type boundaries 

add_rational  mul_rational 

Rational numbers as 
numerators & denominators 

add_complex  mul_complex 

Complex numbers as 
two-dimensional vectors 

How do we add a complex number 
and a rational number together? 

There are many different techniques for doing this! 



Type Dispatching 

Define a different function for each possible combination of 
types for which an operation (e.g., addition) is valid 
def iscomplex(z): 
    return type(z) in (ComplexRI, ComplexMA) 
def isrational(z): 
    return type(z) is Rational 
def add_complex_and_rational(z, r): 
    return ComplexRI(z.real + r.numerator / r.denominator, 
                     z.imag) 
def add_by_type_dispatching(z1, z2): 
    """Add z1 and z2, which may be complex or rational.""" 
    if iscomplex(z1) and iscomplex(z2): 
        return add_complex(z1, z2) 
    elif iscomplex(z1) and isrational(z2): 
        return add_complex_and_rational(z1, z2) 
    elif isrational(z1) and iscomplex(z2): 
        return add_complex_and_rational(z2, z1) 
    else: 
        add_rational(z1, z2) 

Converted to a 
real number (float) 



Tag-Based Type Dispatching 

Idea: Use dictionaries to dispatch on type (like we did for 
message passing) 

def type_tag(x): 
    return type_tags[type(x)] 

type_tags = {ComplexRI: 'com',  
             ComplexMA: 'com',  
             Rational:  'rat'} 

def add(z1, z2): 
    types = (type_tag(z1), type_tag(z2)) 
    return add_implementations[types](z1, z2) 

add_implementations = {} 
add_implementations[('com', 'com')] = add_complex 
add_implementations[('rat', 'rat')] = add_rational 
add_implementations[('com', 'rat')] = add_complex_and_rational 
add_implementations[('rat', 'com')] = add_rational_and_complex 

lambda r, z: add_complex_and_rational(z, r) 

Declares that ComplexRI 
and ComplexMA should be 

treated uniformly 
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Minimal violation of abstraction barriers: we define cross-type 
functions as necessary, but use abstract data types 

Extensible: Any new numeric type can "install" itself into the 
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Question: How many cross-type implementations are required to 
support m types and n operations? 

def add(z1, z2): 
    types = (type_tag(z1), type_tag(z2)) 
    return add_implementations[types](z1, z2) 

integer, rational, real, 
complex 

add, subtract, multiply, 
divide 
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Type Dispatching Analysis 

Minimal violation of abstraction barriers: we define cross-type 
functions as necessary, but use abstract data types 

Extensible: Any new numeric type can "install" itself into the 
existing system by adding new entries to various dictionaries 

Arg 1 Arg 2 Add Multiply 

Complex Complex 

Rational Rational 

Complex Rational 

Rational Complex 

Message Passing 

Type Dispatching 
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Data-Directed Programming 

There's nothing addition-specific about add 

Idea: One dispatch function for (operator, types) pairs 

 def apply(operator_name, x, y): 
    tags = (type_tag(x), type_tag(y)) 
    key = (operator_name, tags) 
    return apply_implementations[key](x, y) 
 
apply_implementations = { 
    ('add', ('com', 'com')): add_complex, 
    ('add', ('rat', 'rat')): add_rational, 
    ('add', ('com', 'rat')): add_complex_and_rational, 
    ('add', ('rat', 'com')): add_rational_and_complex, 
    ('mul', ('com', 'com')): mul_complex, 
    ('mul', ('rat', 'rat')): mul_rational, 
    ('mul', ('com', 'rat')): mul_complex_and_rational, 
    ('mul', ('rat', 'com')): mul_rational_and_complex 
    } 
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Coercion 

Idea: Some types can be converted into other types 

Takes advantage of structure in the type system 

 def rational_to_complex(x): 
    return ComplexRI(x.numerator / x.denominator, 0) 
 
coercions = {('rat', 'com'): rational_to_complex} 

 

Question: Can any numeric type be coerced into any other? 

Question: Have we been repeating ourselves with data-directed 
programming? 
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Applying Operators with Coercion 
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2. Apply type-specific (not cross-type) operations 

 def coerce_apply(operator_name, x, y): 
    tx, ty = type_tag(x), type_tag(y) 
    if tx != ty: 
        if (tx, ty) in coercions: 
            tx, x = ty, coercions[(tx, ty)](x) 
        elif (ty, tx) in coercions: 
            ty, y = tx, coercions[(ty, tx)](y) 
        else: 
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Applying Operators with Coercion 

1. Attempt to coerce arguments into values of the same type 

2. Apply type-specific (not cross-type) operations 

 def coerce_apply(operator_name, x, y): 
    tx, ty = type_tag(x), type_tag(y) 
    if tx != ty: 
        if (tx, ty) in coercions: 
            tx, x = ty, coercions[(tx, ty)](x) 
        elif (ty, tx) in coercions: 
            ty, y = tx, coercions[(ty, tx)](y) 
        else: 
            return 'No coercion possible.' 
    assert tx == ty 
    key = (operator_name, tx) 
                                             



Applying Operators with Coercion 

1. Attempt to coerce arguments into values of the same type 

2. Apply type-specific (not cross-type) operations 

 def coerce_apply(operator_name, x, y): 
    tx, ty = type_tag(x), type_tag(y) 
    if tx != ty: 
        if (tx, ty) in coercions: 
            tx, x = ty, coercions[(tx, ty)](x) 
        elif (ty, tx) in coercions: 
            ty, y = tx, coercions[(ty, tx)](y) 
        else: 
            return 'No coercion possible.' 
    assert tx == ty 
    key = (operator_name, tx) 
    return coerce_implementations[key](x, y) 
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Coercion Analysis 
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coercion as necessary, but use abstract data types 
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Closure Property of Data 

1 

A tuple can contain another tuple as an element. 

Pairs are sufficient to represent sequences. 

 

2 3 4 None 

Recursive list representation of the sequence 1, 2, 3, 4: 

Recursive lists are recursive: the rest of the list is a list. 

(1, (2, (3, (4, None)))) 

Rlist(1, Rlist(2, Rlist(3, Rlist(4)))) 

Nested pairs (old): 

Rlist class (new): 
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    class EmptyList(object): 
        def __len__(self): 
            return 0 
    empty = EmptyList() 
    def __init__(self, first, rest=empty): 
        self.first = first 
        self.rest = rest 
    def __len__(self): 
        return 1 + len(self.rest) 
    def __getitem__(self, i): 
        if i == 0: 
            return self.first 
        return self.rest[i - 1] 
 

Yes, this call is 
recursive 

There's the 
base case! 
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Recursive Operations on Rlists 

Recursive list processing almost always involves a recursive call 
on the rest of the list. 

>>> s = Rlist(1, Rlist(2, Rlist(3))) 
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Rlist(2, Rlist(3)) 
 
                             
                                                  

                           
                           
                   
                                                       



Recursive Operations on Rlists 

Recursive list processing almost always involves a recursive call 
on the rest of the list. 

>>> s = Rlist(1, Rlist(2, Rlist(3))) 
 
>>> s.rest 
Rlist(2, Rlist(3)) 
 
>>> extend_rlist(s.rest, s) 
                                                  

                           
                           
                   
                                                       



Recursive Operations on Rlists 

Recursive list processing almost always involves a recursive call 
on the rest of the list. 

>>> s = Rlist(1, Rlist(2, Rlist(3))) 
 
>>> s.rest 
Rlist(2, Rlist(3)) 
 
>>> extend_rlist(s.rest, s) 
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3))))) 

 
                           
                           
                   
                                                       



Recursive Operations on Rlists 

Recursive list processing almost always involves a recursive call 
on the rest of the list. 

>>> s = Rlist(1, Rlist(2, Rlist(3))) 
 
>>> s.rest 
Rlist(2, Rlist(3)) 
 
>>> extend_rlist(s.rest, s) 
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3))))) 
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Recursive Operations on Rlists 

Recursive list processing almost always involves a recursive call 
on the rest of the list. 

>>> s = Rlist(1, Rlist(2, Rlist(3))) 
 
>>> s.rest 
Rlist(2, Rlist(3)) 
 
>>> extend_rlist(s.rest, s) 
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3))))) 

 
def extend_rlist(s1, s2): 
    if s1 is Rlist.empty: 
                  
                                                       



Recursive Operations on Rlists 

Recursive list processing almost always involves a recursive call 
on the rest of the list. 

>>> s = Rlist(1, Rlist(2, Rlist(3))) 
 
>>> s.rest 
Rlist(2, Rlist(3)) 
 
>>> extend_rlist(s.rest, s) 
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3))))) 

 
def extend_rlist(s1, s2): 
    if s1 is Rlist.empty: 
        return s2 
                                                      



Recursive Operations on Rlists 

Recursive list processing almost always involves a recursive call 
on the rest of the list. 

>>> s = Rlist(1, Rlist(2, Rlist(3))) 
 
>>> s.rest 
Rlist(2, Rlist(3)) 
 
>>> extend_rlist(s.rest, s) 
Rlist(2, Rlist(3, Rlist(1, Rlist(2, Rlist(3))))) 

 
def extend_rlist(s1, s2): 
    if s1 is Rlist.empty: 
        return s2 
    return Rlist(s1.first, extend_rlist(s1.rest, s2)) 
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Map and Filter on Rlists 
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Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
                          
                  
                                                      

                          
                          
                  
                                     
                     
                                     
                 



Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
    if s is Rlist.empty: 
                 
                                                      

                          
                          
                  
                                     
                     
                                     
                 



Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
                                                     

                          
                          
                  
                                     
                     
                                     
                 



Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    return Rlist(fn(s.first), map_rlist(s.rest, fn)) 
 

                          
                          
                  
                                     
                     
                                     
                 



Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    return Rlist(fn(s.first), map_rlist(s.rest, fn)) 
 

def filter_rlist(s, fn): 
                          
                  
                                     
                     
                                     
                 



Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    return Rlist(fn(s.first), map_rlist(s.rest, fn)) 
 

def filter_rlist(s, fn): 
    if s is Rlist.empty: 
                 
                                     
                     
                                     
                 



Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    return Rlist(fn(s.first), map_rlist(s.rest, fn)) 
 

def filter_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
                                    
                     
                                     
                 



Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    return Rlist(fn(s.first), map_rlist(s.rest, fn)) 
 

def filter_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    rest = filter_rlist(s.rest, fn) 
                    
                                     
                 



Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    return Rlist(fn(s.first), map_rlist(s.rest, fn)) 
 

def filter_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    rest = filter_rlist(s.rest, fn) 
    if fn(s.first): 
                                    
                 



Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    return Rlist(fn(s.first), map_rlist(s.rest, fn)) 
 

def filter_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    rest = filter_rlist(s.rest, fn) 
    if fn(s.first): 
        return Rlist(s.first, rest) 
                



Map and Filter on Rlists 

We want operations on a whole list, not an element at a time. 

def map_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    return Rlist(fn(s.first), map_rlist(s.rest, fn)) 
 

def filter_rlist(s, fn): 
    if s is Rlist.empty: 
        return s 
    rest = filter_rlist(s.rest, fn) 
    if fn(s.first): 
        return Rlist(s.first, rest) 
    return rest 
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