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Looking Up Names 

Name expressions look up names in the environment 
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<name> 

class CheckingAccount(Account): 
    withdraw_fee = 1 
    def withdraw(self, amount): 
        return Account.withdraw(self, 
                                amount + withdraw_fee) 

Error: withdraw_fee not 
bound in environment 

Not all languages work this way 
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Account 

CheckingAccount SavingsAccount 

AsSeenOnTVAccount 

Methods looked up from bottom to top, left to right 
The mro method on a class lists the order in which classes are 
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The object class is at the root of the inheritance hierarchy 
• object should be given as the base class when no other 

meaningful base class exists 

Class names should be in CamelCase 

Error messages can be confusing when calling methods with the 
wrong number of arguments: 

 

OOP Odds and Ends 

>>> tom_account = Account('Tom') 
>>> tom_account.deposit(100, 200) 
TypeError: deposit() takes exactly 2 positional arguments (3 given) 

 

>>> add3 = curry(add)(3) 
>>> add3(4, 5) 
TypeError: op_add expected 2 arguments, got 3 

 

Compare to partially curried function: 
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Generic Functions 

An abstraction might have more than one representation. 

•Python has many sequence types: tuples, ranges, lists, etc. 

 

An abstract data type might have multiple implementations. 

•Some representations are better suited to some problems 

 

A function might want to operate on multiple data types. 

 

Message passing enables us to accomplish all of the above, as 
we will see today and next time 
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String Representations 

An object value should behave like the kind of data it is meant 
to represent; 

For instance, by producing a string representation of itself. 

Strings are important: they represent language and programs. 

In Python, all objects produce two string representations: 
•The “str” is legible to humans. 
•The “repr” is legible to the Python interpreter. 

When the “str” and “repr” strings are the same, that’s evidence 
that a programming language is legible by humans! 
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repr(object) -> string 

Return the canonical string representation of the object. 
For most object types, eval(repr(object)) == object. 

The repr function returns a Python expression (as a string) that 
evaluates to an equal object. 

>>> repr(min) 
'<built-in function min>' 
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The “str” String for an Object 

Human interpretable strings are useful as well: 

>>> import datetime 
>>> today = datetime.date(2013, 3, 11) 
>>> repr(today) 
'datetime.date(2013, 3, 11)' 
>>> str(today) 
'2013-03-11' 

 

The result of calling str on the value of an expression is what 
Python prints using the print function. 
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Message Passing Enables Polymorphism 

Polymorphic function: A function that can be applied to many 
(poly) different forms (morph) of data 

str and repr are both polymorphic; they apply to anything. 

repr invokes a zero-argument method __repr__ on its 
argument. 

 

str invokes a zero-argument method __str__ on its argument. 
(But str is a class, not a function!) 

>>> today.__repr__() 
'datetime.date(2012, 10, 8)' 

>>> today.__str__() 
'2012-10-08' 
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Interfaces 

Message passing allows different data types to respond to the 
same message. 

A shared message that elicits similar behavior from different 
object classes is a powerful method of abstraction. 

An interface is a set of shared messages, along with a 
specification of what they mean. 

Classes that implement __repr__ and __str__ methods 
that return Python- and human-readable strings thereby 
implement an interface for producing Python string 
representations. 

Classes that implement __len__ and __getitem__ are 
sequences. 
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Python operators and generic functions make use of methods 
with names like “__name__” 

These are special or magic methods 

Examples: 

len           __len__ 

+, +=         __add__, __iadd__ 

[], []=       __getitem__, __setitem__ 

.             __getattr__, __getattribute__, 
              __setattr__ 

a[i] is equivalent to type(a).__getitem__(a, i) 
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        numer1 = self.numerator * num.denominator 
        numer2 = self.denominator * num.numerator 
        return Rational(numer1 + numer2, denom) 
    def __eq__(self, num): 
        return (self.numerator == num.numerator and 

                self.denominator == num.denominator) 
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@property 
def float_value(self): 
    return (self.numerator // 
            self.denominator) 



Property Methods 

Often, we want the value of instance attributes to be linked. 

>>> f = Rational(3, 5) 
>>> f.float_value 
0.6 
>>> f.numerator = 4 
>>> f.float_value 
0.8 
>>> f.denominator -= 3 
>>> f.float_value 
2.0 

 
The @property decorator on a method designates that it will be 
called whenever it is looked up on an instance.  

It allows zero-argument methods to be called without an explicit 
call expression. 

@property 
def float_value(self): 
    return (self.numerator // 
            self.denominator) 
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