CS61A Lecture 18

Amir Kamil
UC Berkeley
March 4, 2013

Non-Local Assignment @

def make_withdraw(balance):

def withdraw(amount):

Declare the name

nonlocal balance "balance" nonlocal
i amount > balance:

return "Insufficient funds*

Re-bind balance
where it was
bound previously

balance = balance - amount

return balance

return withdraw

Announcements @

O HW6 due on Thursday

O Trends project due tomorrow

O Ants project out

Mutable Values and Persistent State @

Mutable values can be changed without a nonlocal statement.

Global frame func make_withdraw_list(balance]
make_withdraw_list
withdraw Mutable value can
change
f1: make_withdraw_list

func withdraw(amount) [parent=f1]

Name-value binding I def make_withdraw_list(balance):
Re b = [balance]
cannot Change def withdraw(amount):
if amount > b[@]:
return 'Insufficient funds'
amount 25 b(@] = b[@] - amount
return b[8]
return withdraw

withdraw [parent=f1]

wWwithdraw = make_withdraw_list(188)
withdraw(25)

Example: http://goo.gl/cEpmz

Persistent Local State @

Global frame func make_withdraw(balance)

ke_withd
Mmake_withdraw fune withdraw(amount) [parent=f1]

withdraw

A function with a

f1: make_withdraw

balance |50 parent frame

withdraw

The parent contains
local state

Return
value

withdraw [parent=f1]
amount 25 Every call changes
Retin 175 the balance

withdraw [parent=fl1]

amount 25

Return
value |50

Example: http://goo.gl/5LZ6F

Creating Two Withdraw Functions @

Global frame _——>func make_withdraw(balance)

make_withdraw |« ~

—>func withdraw(amount) [parent=f1]

wd2 & ™func withdraw(amount) [parent=f2]

make_w

Return def make_withdraw(balance):
- def withdraw(amount):
nonlocal balance
if amount > balance:
return "Insufficient funds
balance = balance - amount
return balance
return withdraw

wd = make_withdraw(100)
wd2 = make_withdraw(168)
Wd(25)

13 wd2(15)

Example: http://goo.gl/glTyB

Multiple References to a Withdraw Function @

A Mutable Container @

Global frame ——>func make_withdraw(balance)

make_withdraw /

———% func withdraw(amount) [parent=f1]

o
-

def make_withdraw(balance):
def withdraw(amount):
nonlocal balance
if amount > balance:
return 'Insufficient funds'
balance = balance - amount
return balance
return withdraw

wd = make_withdraw(160)
wd2 = wd
wd(25)

.17 wd2(15)

Example: http://g00.¢/X24G9

def container(contents):
""" Return a container that is manipulated by two
functions.

>>> get, put = container(“hello®)
>>> get()

“hello”

>>> put("world®)

>>> get()

“world*®

def get(Q):
return contents

def put(value):
nonlocal contents
contents = value

return put, get

The Benefits of Non-Local Assignment @

Dispatch Functions @

O Ability to maintain some state that is local to a function, but
evolves over successive calls to that function.

O The binding for balance in the first non-local frame of the
environment associated with an instance of withdraw is
inaccessible to the rest of the program.

O An abstraction of a bank account that manages its own
internal state.

A technique for packing multiple behaviors into one function

ir(x, y):
""" Return a function that behaves like a pair.
def dispatch(m):

if m==0:
return x

elifm ==
return y

return dispatch
Message argument can be anything, but strings are most
common
The body of a dispatch function is always the same:
® One conditional statement with several clauses
® Headers perform equality tests on the message

Weasley Potter
Account Account
$10 $1,000,000
Referential Transparency @

Message Passing @

Expressions are referentially transparent if substituting an
expression with its value does not change the meaning of a
program.

mul(add(2, mul(4, 6)),
mul(add(2, 24)

mul(26 , 3)

Mutation is a side effect (like printing)

Side effects violate the condition of referential transparency
because they do more than just return a value; they change the
state of the computer.

An approach to organizing the relationship among different pieces of a
program

Different objects pass messages to each other

¢ What is your fourth element?

¢ Change your third element to this new value. (please?)

Encapsulates the behavior of all
operations on a piece of data

Important historical role:

The message passing approach
strongly influenced object-oriented
programming

(next lecture)

Mutable Container with Message Passing

af

def container_dispatch(contents): def container(conte

def dispatch(message,
value=None):

nonlocal contents

if message == 'get': <i$::::i:> def get():

return contents return cont

if message == ‘put': <:::> def put(value):

contents = value nonlocal co
contents =

return dispatch return put, get

nts):

ents

ntents

value

Mutable Recursive Lists

def mutable_rlist():
contents = empty_rlist
def dispatch(message, value=None):
nonlocal contents

iT message == “len”:

return len_rlist(contents)
elif message == “getitem”:

return getitem_rlist(contents, value)
elif message == “push”:

contents = make_rlist(value, contents)
elif message == “pop~:

item = first(contents)
contents = rest(contents)
return item
elif message == "str":
return str_rlist(contents)
return dispatch

