
CS61A Lecture 18

Amir Kamil
UC Berkeley

March 4, 2013

 HW6 due on Thursday

 Trends project due tomorrow

 Ants project out

Announcements

Persistent Local State

A function with a
parent frame

The parent contains
local state

Every call changes
the balance

Example: http://goo.gl/5LZ6F

http://goo.gl/5LZ6F

Non-Local Assignment

def make_withdraw(balance):

 """Return a withdraw function with a starting balance."""

 def withdraw(amount):

 nonlocal balance

 if amount > balance:

 return 'Insufficient funds'

 balance = balance - amount

 return balance

 return withdraw

Declare the name
"balance" nonlocal

Re-bind balance
where it was

bound previously

Mutable Values and Persistent State

Mutable values can be changed without a nonlocal statement.

Name-value binding
cannot change

Mutable value can
change

Example: http://goo.gl/cEpmz

http://goo.gl/cEpmz

Creating Two Withdraw Functions

Example: http://goo.gl/glTyB

http://goo.gl/glTyB

Multiple References to a Withdraw Function

Example: http://goo.gl/X2qG9

http://goo.gl/X2qG9

The Benefits of Non-Local Assignment

 Ability to maintain some state that is local to a function, but
evolves over successive calls to that function.

 The binding for balance in the first non-local frame of the
environment associated with an instance of withdraw is
inaccessible to the rest of the program.

 An abstraction of a bank account that manages its own
internal state.

Weasley
Account

$10

Potter
Account

$1,000,000

Referential Transparency

Expressions are referentially transparent if substituting an
expression with its value does not change the meaning of a
program.

mul(add(2, mul(4, 6)), 3)

mul(add(2, 24), 3)

mul(26 , 3)

Mutation is a side effect (like printing)

Side effects violate the condition of referential transparency
because they do more than just return a value; they change the
state of the computer.

A Mutable Container

def container(contents):
 """Return a container that is manipulated by two
 functions.

 >>> get, put = container('hello')
 >>> get()
 'hello'
 >>> put('world')
 >>> get()
 'world'
 """

 def get():
 return contents

 def put(value):
 nonlocal contents
 contents = value

 return put, get

Dispatch Functions

A technique for packing multiple behaviors into one function

def pair(x, y):
 """Return a function that behaves like a pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch

Message argument can be anything, but strings are most
common

The body of a dispatch function is always the same:
• One conditional statement with several clauses
• Headers perform equality tests on the message

Message Passing

An approach to organizing the relationship among different pieces of a
program

Different objects pass messages to each other

• What is your fourth element?

• Change your third element to this new value. (please?)

Encapsulates the behavior of all
operations on a piece of data

Important historical role:
The message passing approach
strongly influenced object-oriented
programming
(next lecture)

Mutable Container with Message Passing

def container(contents):

 def get():

 return contents

 def put(value):

 nonlocal contents

 contents = value

 return put, get

def container_dispatch(contents):

 def dispatch(message,
 value=None):

 nonlocal contents

 if message == 'get':

 return contents

 if message == ‘put':

 contents = value

 return dispatch

Mutable Recursive Lists

def mutable_rlist():
 contents = empty_rlist
 def dispatch(message, value=None):
 nonlocal contents
 if message == 'len':
 return len_rlist(contents)
 elif message == 'getitem':
 return getitem_rlist(contents, value)
 elif message == 'push':
 contents = make_rlist(value, contents)
 elif message == 'pop':
 item = first(contents)
 contents = rest(contents)
 return item
 elif message == 'str':
 return str_rlist(contents)
 return dispatch

	CS61A Lecture 18
	Announcements
	Persistent Local State
	Non-Local Assignment
	Mutable Values and Persistent State
	Creating Two Withdraw Functions
	Multiple References to a Withdraw Function
	The Benefits of Non-Local Assignment
	Referential Transparency
	A Mutable Container
	Dispatch Functions
	Message Passing
	Mutable Container with Message Passing
	Mutable Recursive Lists

