
CS61A Lecture 16

Amir Kamil
UC Berkeley

February 27, 2013

 HW5 due tonight

 Trends project due on Tuesday

 Partners are required; find one in lab or on Piazza
Will not work in IDLE
 New bug submission policy; see Piazza

Announcements

Iterables

Iterables provide access to some elements in order but do not
provide length or element selection

Python-specific construct; more general than a sequence

Many built-in functions take iterables as argument

For statements also operate on iterable values.

tuple Construct a tuple containing the elements

map Construct a map that results from applying the given function
to each element

filter Construct a filter with elements that satisfy the given condition
sum Return the sum of the elements
min Return the minimum of the elements
max Return the maximum of the elements

Generator Expressions

(<map exp> for <name> in <iter exp> if <filter exp>)

One large expression that combines mapping and filtering to
produce an iterable

No-filter version: (<map exp> for <name> in <iter exp>)

• Evaluates to an iterable.

• <iter exp> is evaluated when the generator expression is
evaluated.

• Remaining expressions are evaluated when elements are
accessed.

Precise evaluation rule introduced in Chapter 4.

Reducing a Sequence

Reduce is a higher-order generalization of max, min, and sum.

>>> from operator import mul
>>> from functools import reduce
>>> reduce(mul, (1, 2, 3, 4, 5), 1)
120

Like accumulate from Homework 2, but with iterables

First argument:
A two-argument

function

Second argument:
an iterable object

Optional initial
value as third

argument

def accumulate(combiner, start, n, term):
 return reduce(combiner,
 map(term, range(1, n + 1)),
 start)

Create an iterable of fixed-length sequences

More Functions on Iterables (Bonus)

>>> a, b = (1, 2, 3), (4, 5, 6, 7)
>>> for x, y in zip(a, b):
... print(x + y)
...
5
7
9

The itertools module contains many useful functions for
working with iterables
>>> from itertools import product, combinations
>>> tuple(product(a, b[:2]))
((1, 4), (1, 5), (2, 4), (2, 5), (3, 4), (3, 5))
>>> tuple(combinations(a, 2))
((1, 2), (1, 3), (2, 3))

Produces tuples with one element
from each argument, up to length

of smallest argument

Lists

>>> a = [3, 1, 2]
>>> a
[3, 1, 2]
>>> len(a)
3
>>> a[1]
1
>>> c, d = a, a[:]
>>> a, c, d
([3, 1, 2], [3, 1, 2], [3, 1, 2])
>>> c[0] = 4
>>> a, c, d
([4, 1, 2], [4, 1, 2], [3, 1, 2])
>>> d[0] = 5
>>> a, c, d
([4, 1, 2], [4, 1, 2], [5, 1, 2])
>>> a[1:2] = [7, 8, 9]
>>> a, c, d
([4, 7, 8, 9, 2], [4, 7, 8, 9, 2], [5, 1, 2])

Create a list using square brackets

Lists are sequences

Bind another name to a list or a
slice of a list

Modify contents of a list

wut()?

An object is a representation of information

All data in Python are objects

But an object is not just data; it also bundles behavior together
with that data

An object’s type determines what data it stores and what
behavior it provides

Objects

>>> type(4)
<class 'int'>

>>> type([4])
<class 'list'>

All objects have attributes
We use dot notation to access an attribute

An attribute may be a method, which is a type of function, so it
may be called

Notice that we did not have to pass in the list as an argument;
the method already knows the object on which it is operating

Object Attributes

>>> (4).real, (4).imag
(4, 0)

>>> [1, 2, 1, 4].count(1)
2

Calling the constructor of a built-in type creates a new object of
that type

Objects can be distinct even if they hold the same data

The is and not is operators check if two objects are the same

Compare to ==, which checks for equality, not sameness

Creating and Distinguishing Objects

>>> [1, 2, 1, 4] is [1, 2, 1, 4]
False

>>> [1, 2, 1, 4] == [1, 2, 1, 4]
True

Assignment does not create a new object

In our environment diagrams, assignment copies the arrow

The “arrow” is called a pointer or reference

Multiple names can point to or reference the same object

Objects and Assignment

Example: http://goo.gl/Xrm4k

But slicing does!

http://goo.gl/Xrm4k

An object may be immutable, which means that its data cannot
be changed

Most of the types we have seen so far are immutable
 ints, floats, booleans, tuples, ranges, strings

For an immutable type, it doesn’t matter whether or not two
equal objects are the same

Neither can change, so one is as good as the other

Immutable Types

>>> e, f = 1e12, 1e12
>>> e is f
True
>>> e = 1e12
>>> f = 1e12
>>> e is f
False

Mutable objects, on the other hand, can change, and any change
affects all references to that object

So we need to be careful with mutation

Mutable Types

Example: http://goo.gl/ornZ8

http://goo.gl/ornZ8

Lists have many useful methods

 append: add an element to the end of a list

 extend: add all elements from an iterable to the end of
the list

 count: count the number of occurrences of a value

 pop: remove an element from the end of a list

 sort: sort the elements of a list

These methods (except count) mutate the list

Compare to sorted(x), which returns a new list

Call dir(list) to see a full list of attributes

List Methods

We can construct a list using a list comprehension, which is
similar to a generator expression

List Comprehensions

[<map exp> for <name> in <iter exp> if <filter exp>]

• Evaluates to a list.

• <iter exp> is evaluated once.

• <name> is bound to an element, and <filter exp> is
evaluated. If it evaluates to a true value, then <map exp>
is evaluated, and its value is added to the resulting list.

>>> [3 / x for x in range(4) if x != 0]
[3.0, 1.5, 1.0]

Sequences map integers to values

What if we wanted arbitrary values in the domain?

We use a dictionary

Dictionaries

>>> a = [3, 1, 2]

'cain' -> 2.79
'bumgarner' -> 3.37
'vogelsong' -> 3.37
'lincecum' -> 5.18
'zito' -> 4.15

>>> eras = {'cain': 2.79,
 'bumgarner': 3.37,
 'vogelsong': 3.37,
 'lincecum': 5.18,
 'zito': 4.15}
>>> eras['cain']
2.79

-3 -> 3 0 -> 3
-2 -> 1 1 -> 1
-1 -> 2 2 -> 2

Dictionaries are not sequences, but they do have a length and
are iterable

 Iterating provides each of the keys in some arbitrary order

Dictionaries are mutable

There are dictionary comprehensions, which are similar to list
comprehensions

Dictionary Features

>>> total_era = 0
>>> for pitcher in eras:
... total_era += eras[pitcher]
...
>>> total_era / len(eras)
3.772

>>> eras['lincecum'] = 3.0

>>> {p: round(eras[p]-1, 3) for p in eras}
{'zito': 3.15, 'cain': 1.79, 'bumgarner': 2.37,
'lincecum': 2.0, 'vogelsong': 2.37}

Dictionaries are unordered collections of key-value pairs.

Dictionary keys do have two restrictions:

 A key of a dictionary cannot be an object of a mutable
built-in type.

 Two keys cannot be equal. There can be at most one value
for a given key.

This first restriction is tied to Python's underlying
implementation of dictionaries.

The second restriction is an intentional consequence of the
dictionary abstraction.

Limitations on Dictionaries

	CS61A Lecture 16
	Announcements
	Iterables
	Generator Expressions
	Reducing a Sequence
	More Functions on Iterables (Bonus)
	Lists
	Objects
	Object Attributes
	Creating and Distinguishing Objects
	Objects and Assignment
	Immutable Types
	Mutable Types
	List Methods
	List Comprehensions
	Dictionaries
	Dictionary Features
	Limitations on Dictionaries

