
CS61A Lecture 14

Amir Kamil
UC Berkeley

February 22, 2013

Thanks to Colin Lockard for the picture (and the title)!

The 61A Graffiti Bandit Strikes Again!

 HW5 out

 Hog contest due today

 Completely optional, opportunity for extra credit
 See website for details

 Trends project out today

Announcements

Rational Number Arithmetic Code

def mul_rational(x, y):
 return rational(numer(x) * numer(y),
 denom(x) * denom(y))

• rational(n, d) returns a rational number x

• numer(x) returns the numerator of x

• denom(x) returns the denominator of x

Constructor
Selectors

Wishful
thinking

def add_rational(x, y):
 nx, dx = numer(x), denom(x)
 ny, dy = numer(y), denom(y)
 return rational(nx * dy + ny * dx, dx * dy)

def eq_rational(x, y):
 return numer(x) * denom(y) == numer(y) * denom(x)

Tuples

>>> pair = (1, 2)
>>> pair
(1, 2)

>>> x, y = pair
>>> x
1
>>> y
2

>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

A tuple literal:
Comma-separated expression

"Unpacking" a tuple

Element selection

More on tuples today

Representing Rational Numbers

def rational(n, d):
 """Construct a rational number x that represents
 n/d."""
 return (n, d)

from operator import getitem

def numer(x):
 """Return the numerator of rational number x."""
 return getitem(x, 0)

def denom(x):
 """Return the denominator of rational number
 x."""
 return getitem(x, 1)

Construct a tuple

Select from a tuple

Reducing to Lowest Terms

from fractions import gcd

def rational(n, d):
 """Construct a rational number x that represents
 n/d."""
 g = gcd(n, d)
 return (n//g, d//g)

Example:

3

2

5

3
*

5

2
=

2

5

1

10
+

1

2
=

25

50

1/25

1/25
*

1

2
=

15

6

1/3

1/3
*

5

2
=

Greatest common divisor

Abstraction Barriers

add_rational mul_rational eq_rational

rational numer denom

tuple getitem

Rational numbers as whole data values

Rational numbers as numerators & denominators

Rational numbers as tuples

However tuples are implemented in Python

Violating Abstraction Barriers

Does not use
constructors Twice!

No selectors!

And no constructor!

add_rational((1, 2), (1, 4))

def divide_rational(x, y):

 return (x[0] * y[1], x[1] * y[0])

 We need to guarantee that constructor and selector
functions together specify the right behavior.

 Behavior condition: If we construct rational number
x from numerator n and denominator d, then
numer(x)/denom(x) must equal n/d.

 An abstract data type is some collection of selectors
and constructors, together with some behavior
condition(s).

 If behavior conditions are met, the representation is
valid.

What is an Abstract Data Type?

You can recognize data types by behavior, not by bits

Behavior Conditions of a Pair

To implement our rational number abstract data type,
we used a two-element tuple (also known as a pair).

What is a pair?

Constructors, selectors, and behavior conditions:

If a pair p was constructed from elements x and y, then

•getitem_pair(p, 0) returns x, and

•getitem_pair(p, 1) returns y.

Together, selectors are the inverse of the constructor

Generally true of container types. Not true for rational
numbers because of GCD

def pair(x, y):
 """Return a functional pair."""
 def dispatch(m):
 if m == 0:
 return x
 elif m == 1:
 return y
 return dispatch

Functional Pair Implementation

This function
represents a pair

Constructor is a higher-
order function

Selector defers to
the functional pair

def getitem_pair(p, i):
 """Return the element at index i of pair p."""
 return p(i)

Using a Functionally Implemented Pair

>>> p = pair(1, 2)

>>> getitem_pair(p, 0)
1

>>> getitem_pair(p, 1)
2

This pair representation is valid!

As long as we do not violate
the abstraction barrier,

we don't need to know that
pairs are just functions

If a pair p was constructed from elements x and y, then

•getitem_pair(p, 0) returns x, and

•getitem_pair(p, 1) returns y.

The Sequence Abstraction

There isn't just one sequence type (in Python or in general)

This abstraction is a collection of behaviors:

red, orange, yellow, green, blue, indigo, violet.

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at 0 for the first element.

 0 , 1 , 2 , 3 , 4 , 5 , 6 .

The sequence abstraction is shared among several types,
including tuples.

Tuples introduce new memory locations outside of a
frame
We use box-and-pointer notation to represent a tuple

 Tuple itself represented by a set of boxes that hold values
 Tuple value represented by a pointer to that set of boxes

Tuples in Environment Diagrams

Example: http://goo.gl/iFHx0

http://goo.gl/iFHx0

A method for combining data values satisfies the closure
property if:

The result of combination can itself be combined using the
same method.

Closure is the key to power in any means of combination
because it permits us to create hierarchical structures.

Hierarchical structures are made up of parts, which themselves
are made up of parts, and so on.

The Closure Property of Data Types

Tuples can contain tuples as elements

Recursive Lists

Constructor:
def rlist(first, rest):
 """Return a recursive list from its first element and
 the rest."""

 Selectors:
def first(s):
 """Return the first element of recursive list s."""

def rest(s):
 """Return the remaining elements of recursive list s."""

 Behavior condition(s):

If a recursive list s is constructed from a first element f
and a recursive list r, then
• first(s) returns f, and
• rest(s) returns r, which is a recursive list.

Implementing Recursive Lists Using Pairs

A recursive list is
a pair

The first element of the
pair is the first element

of the list

The second element of
the pair is the rest of

the list

None
represents
the empty

list

1 , 2 , 3 , 4

Example: http://goo.gl/fVhbF

http://goo.gl/fVhbF

Implementing the Sequence Abstraction

def len_rlist(s):
 """Return the length of recursive list s."""
 if s == empty_rlist:
 return 0
 return 1 + len_rlist(rest(s))

def getitem_rlist(s, i):
 """Return the element at index i of recursive list s."""
 if i == 0:
 return first(s)
 return getitem_rlist(rest(s), i - 1)

Length. A sequence has a finite length.

Element selection. A sequence has an element
corresponding to any non-negative integer index less
than its length, starting at 0 for the first element.

	CS61A Lecture 14
	The 61A Graffiti Bandit Strikes Again!
	Announcements
	Rational Number Arithmetic Code
	Tuples
	Representing Rational Numbers
	Reducing to Lowest Terms
	Abstraction Barriers
	Violating Abstraction Barriers
	What is an Abstract Data Type?
	Behavior Conditions of a Pair
	Functional Pair Implementation
	Using a Functionally Implemented Pair
	The Sequence Abstraction
	Tuples in Environment Diagrams
	The Closure Property of Data Types
	Recursive Lists
	Implementing Recursive Lists Using Pairs
	Implementing the Sequence Abstraction

