

CS61A Lecture 13

Amir Kamil UC Berkeley February 20, 2013

Announcements

\square HW4 due today at 11:59pm
\square Hog contest deadline on Friday
\square Completely optional, opportunity for extra credit
\square See website for details

Converting Recursion to Iteration

Can be tricky! Iteration is a special case of recursion Idea: Figure out what state must be maintained by the function
def summation(n, term):

def summation_iter(n, term):
total $=0$
while $\mathrm{n}>0$:
total, $\mathrm{n}=$ total + term(n), $\mathrm{n}-1$ return total

Converting Iteration to Recursion

More formulaic: Iteration is a special case of recursion Idea: The state of iteration can be passed as parameters def fib_iter(n):
if $\mathrm{n}==0$:
return 0
fib_n, fib_n_1, k= 1, 0, 1
Ẅhíle k < n :
fib_n, fib_n_1 = fib_n + fib_n_1, fib_n

$$
k=k+1
$$

return fib_n
def fib_rec(n,fib_n, fib_n_1, k):
if $n==0:$
return 0
if k >= n :

Parameters in a
recursive function
return fib_n
return fib_rec(n, fib_n + fib_n_1, fib_n, k + 1)

Mutual Recursion

Mutual recursion is when the recursive process is split across multiple functions

Decorating a recursive function generally results in mutual recursion @trace1
def factorial(n):
if $n==0:$
return 1
return n * factorial(n-1)

Currying

We have used higher-order functions to produce a function to add a constant to its argument
What if we wanted to do the same for multiplication?
def make_adder(n): def adder(k): return add (n, k) return adder
def make_multiplier(n):
def make_multiplier(n):
def multiplier(k):
def multiplier(k):
return mui(n, k)
return mui(n, k)
return multiplier
return multiplier
>>> make_multiplier(2)(3)
6
>>> mul(2, 3)
6
Same relationship between functions

How can we do this in general without repeating ourselves?

Currying

First, identify common structure.
Then define a function that generalizes the procedure.

```
```

def curry2(f):

```
```

def curry2(f):
def outer(n):
def outer(n):
def inner(k):
def inner(k):
return f(n, k)
return f(n, k)
return inner
return inner
return outer
return outer
>>> curry2(mul)(2)(3)
>>> curry2(mul)(2)(3)
6
6
>>> mul(2, 3)
>>> mul(2, 3)
6

```
```

6

```
```

> def make_adder(n): def adder(k): return add(n, k) return adder

>>> make_adder(2)(3)
5
>>> $\operatorname{add}(2,3)$
5

This process of converting a multi-argument function to consecutive single-argument functions is called currying.

Functional Abstractions

def square(x):
return mul(x, x)

```
def sum_squares(x, y):
    return square(x) + square(y)
```

What does sum_squares need to know about square?

- square takes one argument.
- square has the intrinsic name square.
- square computes the square of a number. Yes
- square computes the square by calling mul.

```
def square(x): def square(x):
    return pow(x, 2) return mul(x, x-1) + x
```

If the name "square" were bound to a built-in function, sum_squares would still work identically

What is Data?

Data: the things that programs fiddle with
Primitive values are the simplest type of data
Integers: 2, 3, 2013, -837592010
Floating point (decimal) values: -4.5, 98.6
Booleans: True, False
How do we represent more
OARESHOTSGAT complex data?

We need data abstractions!

Data Abstraction

Compound data combine smaller pieces of data together
\square A date: a year, month, and day
\square A geographic position: latitude and logitude
An abstract data type lets us manipulate compound data as a unit

Isolate two parts of any program that uses data
\square How data are represented (as parts)
\square How data are manipulated (as units)
Data abstraction: A methodology by which functions enforce an abstraction barrier between representation and use

Rational Numbers

numerator
denominator
Exact representation of fractions
A pair of integers
As soon as division occurs, the exact representation is lost!
Assume we can compose and decompose rational numbers:
Constructor rational (\mathbf{n}, \mathbf{d}) returns a rational number x

Selectors

- numer (\mathbf{x}) returns the numerator of x
- $\operatorname{denom}(x)$ returns the denominator of x

Rational Number Arithmetic

Example:
$\frac{3}{2} * \frac{3}{5}=\frac{9}{10}$
$\frac{3}{2}+\frac{3}{5}=\frac{21}{10}$

General Form:

$$
\frac{n x}{d x} * \frac{n y}{d y}=\frac{n x^{*} n y}{d x^{*} d y}
$$

$$
\frac{n x}{d x}+\frac{n y}{d y}=\frac{n x^{*} d y+n y^{*} d x}{d x * d y}
$$

Rational Number Arithmetic Code

def mul_rational(x, y):
return rationall numer (x) * numer (y),
Constructor
def add_rational(x, y):
$n x, d x=$ numer (x), denom(x)
ny, dy = numer(y), denom(y)
return rational(nx * dy + ny * dx, dx * dy)
def eq_rational(x, y):
return numer(x) * denom(y) == numer(y) * denom(x)

Wishful thinking

- rational(n, d) returns a rational number x
- numer (x) returns the numerator of x
- $\operatorname{denom(x)}$ returns the denominator of x

Tuples

>>> pair = $(1,2)$
>>> pair
$(1,2)$
A tuple literal:
Comma-separated expression
"Unpacking" a tuple
>>> $x, y=$ pair
>>> x
1
>>> y
2
>>> pair[0]
1
>>> pair[1]
2
>>> from operator import getitem
>>> getitem(pair, 0)
1
>>> getitem(pair, 1)
2

More tuples next lecture

Representing Rational Numbers

def rational(n, d):
"""Construct a rational number x that represents n/d."""
return (\mathbf{n}, \mathbf{d}) Construct a tuple
from operator import getitem
def numer(x):
"""Return the numerator of rational number x.""" return getitem(x, 0)
def denom(x):
"""Return the denominator of rational number
x."""
returngetitem(x, 1)
Select from a tuple

