CS61A Lecture 9

Amir Kamil
UC Berkeley
February 11, 2013

Announcements

\square HW3 due Tuesday at 7pm
\square Hog due today!
\square Hog contest due later; see announcement tonight
\square Midterm Wednesday at 7pm
\square See course website for assigned locations, more info
\square Midterm review in lab this week

Factorial

The factorial of a non-negative integer n is

$$
\begin{gathered}
n!=\left\{\begin{array}{lr}
1, & n=0 \\
n *(n-1) * \cdots * 1, & \text { or } n=1 \\
(n>1
\end{array}\right. \\
n,
\end{gathered}
$$

Factorial

The factorial of a non-negative integer n is

$$
n!=\left\{\begin{array}{lr}
1, & n=0 \text { or } n=1 \\
n *(n-1)!, & n>1
\end{array}\right.
$$

This is called a recurrence relation;
Factorial is defined in terms of itself
Can we write code to compute factorial using the same pattern?

Computing Factorial

We can compute factorial using the direct definition

$$
n!=\left\{\begin{array}{lrr}
1, & n=0 & \text { or } n=1 \\
n *(n-1) * \cdots * 1, & n>1
\end{array}\right.
$$

def factorial_iter(n): if $n=0$ or $n=1:$ return 1
total = 1
while n >= 1:
total, $n=$ total * n, n - 1 return total

Computing Factorial

Can we compute it using the recurrence relation?

$$
\begin{aligned}
& n!= \begin{cases}1, & n=0 \\
n *(n-1)! & \text { or } n=1\end{cases} \\
& n=1
\end{aligned}
$$

This is much shorter! But can a function call itself?

Factorial Environment Diagram

Let's see what happens!

```
def factorial(n):
    if n == 0 or n == 1:
        return 1
    return n * factorial(n - 1)
    factorial(4)
```


Example: http://goo.gl/NjCKG

Recursive Functions

A function is recursive if the body calls the function itself, either directly or indirectly

Recursive functions have two important components:

1. Base case(s), where the function directly computes an answer without calling itself
2. Recursive case(s), where the function calls itself as part of the computation

def factorial(n):

Base case if $\mathrm{n}=0$ or $\mathrm{n}=\mathbf{1}$: return 1

Recursive return n * factorial(n-1) case

Recursion Example: Heavy Box

def lift_box(box):
\square if too_heavy(box):
\Rightarrow book $=$ remove_book(box)
\rightarrow lift_box(box)
\Rightarrow add_book(box, book) else:
\longrightarrow move_box(box)

Heavy Book
Heavy Book
Heavy Book
Heavy Book

Heavy Book
Heavy Book
Heavy Book
Heavy Book

Heavy Book
Heavy Book
Heavy Book
Heavy Book

Recursion Example: Duplication

def duplicate(size):
return (duplicate(0.6 * size) + duplicate(0.6 * size))

Futurama Season 6, Episode 17 "Benderama"
© Twentieth Century Fox Film

Recursion Example: Dreaming

Global framé \square dream or func dream(level) dream
level 1
-

dream

Some recursive computations may be done more easily by reversing the order of recursive calls.
A helper function helps us to do this.

$$
n!=\left\{\begin{array}{lr}
1, & n=0 \text { or } n=1 \\
n *(n-1)!, & n>1
\end{array}\right.
$$

def factorial2(n):
return factorial_helper(n, 1)
def factorial_helper(n, k):
if k >= n :
return k
return k * factorial_helper(n, k + 1)

Reverse Environment Diagram

Here is how the reversed computation evolves

```
def factorial2(n):
    return factorial_helper(n, 1)
def factorial_helper(n, k):
    if k >= n:
        return k
    return k * factorial_helper(n, k + 1)
factorial2(3)
```


Fibonacci Sequence

The Fibonacci sequence is defined as

```
\(\operatorname{fib}(n)= \begin{cases}0, & n=0 \\ 1, & n=1 \\ \operatorname{fib}(n-1)+\operatorname{fib}(n-2), & n>1\end{cases}\)
def fib_iter(n):
    if \(n==0:\)
        return 0
    fib_n, fib_n_1 = 1, 0
    \(\mathrm{k}=1\)
    while k < n:
        fib_n, fib_n_1 = fib_n_1 + fib_n, fib_n
        k += 1
    return fib_n

\section*{Fibonacci Sequence}

The Fibonacci sequence is defined as
\[
\begin{aligned}
& \mathrm{fib}(n)= \begin{cases}0, & n=0 \\
1, & n=1 \\
\mathrm{fib}(n-1)+\mathrm{fib}(n-2), & n>1\end{cases} \\
& \text { def fib(n): } \\
& \text { if } \mathbf{n}==0: \\
& \begin{array}{l}
\text { return } 0
\end{array} \\
& \text { elf } \mathbf{n}==1: \\
& \text { return } 1
\end{aligned} \quad \begin{aligned}
& \text { Two recursive calls! }
\end{aligned}
\]

\section*{Tree recursion}

Executing the body of a function may entail more than one recursive call to that function

This is called tree recursion
```

