
CS 61A Fall 2008 Week 13 Lab
Monday 11/17 afternoon, Tuesday 11/18, or Wednesday 11/19 morning

For this lab, we’ll be using MapReduce, a programming paradigm developed by Google that uses higher-

order functions to allow a programmer to process large amount of data in parallel on many computers.

Hadoop is an open source implementation of the mapreduce design.

Any computation in mapreduce consists primarily of two functions: the mapper and the reducer. (Note:

The Google mapreduce paper in the course reader says “the map function” to mean the function that the

user writes, the one that’s applied to each datum; this usage is confusing since everyone else uses “map” to

mean the higher-order function that controls the invocation of the user’s function, so we’re calling the latter

the mapper :

(map mappermappermapper data)

Similarly, we’ll use reduce to refer to the higher-order function, and reducer to mean the user’s accu-

mulation function.)

The mapper function takes a (input-key . input-value) pair as its argument and returns a list of

(finalkey . intermediatevalue) pairs. (It returns a list of pairs, not a single pair, both to allow

more than one intermediate value per input value (e.g., separating a line into words) and to allow for the

possibility of returning an empty stream, meaning no intermediate values at all, so that the mapper can also

effectively filter the input data.)

The reducer function is applied to each group of intermediate-values with the same final-keys,

and it returns a (finalkey . finalvalue) pair. (The reducer takes two values as arguments: one new

value and one partially accumulated value, just like the two-argument function used with accumulate.)

Since there are many groups, the outputs of the reducer function are appended together to form the final

output stream.

We’ve developed a system that allows you to run mapreduce computations on a computer cluster from

within STk. Our version of mapreduce in Scheme uses slightly simpler semantics than the original

MapReduce.

The syntax for performing a mapreduce computation in STk is as follows:

(mapreduce <mapper> <reducer> <base-case> <input>)

Mapper is a one-argument procedure that specifies the function that map applies.

Reducer is a procedure specifying the reduction function. Base-case is the base case for the reduction

function. It is similar to the base case argument in Scheme’s accumulate.

Input specifies the input data to the MapReduce computation. This argument may be a string, the name of

a distributed file directory stored on all the machines in the parallel cluster, e.g., "/gutenberg" for

the Project Gutenberg collection of public domain books. Alternatively, it may be a stream (not the name

of a stream!) that was produced by an earlier invocation of mapreduce.

Continued on next page...

75



Week 13 continued:

If you forget to save the output of mapreduce, you can always run (get-last-mapreduce-output),

which returns the last stream mapreduce returned.

For example, suppose we want to count the number of lines in the collected works of Shakespeare. Our input

would be a set of key-value pairs with the name of a play as the key and a line of text as the value. The

input is provided in a distributed file directory named "/gutenberg/shakespeare".

We could solve this problem with mapreduce as follows:

(mapreduce (lambda (input-key-value-pair)

(list (make-kv-pair ’line 1))) ; mapper

+ ; reducer

0 ; base case

"/gutenberg/shakespeare") ; data

Since we’re trying to get a total count for all the works of Shakespeare, not a separate count for each play,

we give every intermediate pair the same key. We used the word line, but anything would have worked.

The value is 1 because each line counts as one line!

What we want the reducer to do is add up all the 1s from all the files. So we don’t need a complicated

reducer; we just use +.

In this case, there’s only one instance of reduce adding up all the values, but in more general cases there’ll

be one per key, and so what mapreduce returns is not a single reduced value, but a stream of key-value

pairs. In this case it’ll be a stream of length 1:

((line . number))

To get just the number, we’d say (kv-value (stream-car (mapreduce ...))).

Exercises:

1. The example above is inefficient because the map phase happens in parallel, but the reduce phase happens

on a single machine, since all the keys are the same, and each group of same-key pairs go to a single reduce

instance. Fix this example so that the plays are line-counted in parallel, but we still get a single total line

count at the end. (Hint: Do something to the value that mapreduce returns.)

Continued on next page...

76



Week 13 continued:

2(a). One common MapReduce application is a distributed word count. Given a large body of text, such as

Project Gutenberg, we want to find out which words are the most common.

Write a mapreduce program that returns each word in a body of text paired with the number of times

it is used. Remember, the argument to your mapper function is a pair whose key is the document or book

name and whose value is a single line of text from a single book. For example,

> (define gutenberg-wordcounts (mapreduce ...))

> (ss gutenberg-wordcounts 3)

((the . 300) (was . 249) (thee . 132) ... ) ; These aren’t the actual numbers.

2(b). Using the output of the program you wrote in part (a), return the most commonly used word.

2(c). Using the output of the program you wrote in part (a), generate a stream of all words used only once.

3(a). Pattern matching is important in many areas of computer science. In this problem, we’ll use

mapreduce to find lines that match a pattern. Assume you’re given the function match? that takes

two arguments, a pattern and a sentence, and returns #t if the sentence contains a match for the pattern,

or false otherwise. For example:

> (match? ’(* hard * night *) ’(a hard days night))

#t

> (match? ’(* hard night *) ’(a hard days night))

#f

> (match? ’(* night *) ’(knight rider))

#f

> (match? ’(* walrus) ’(I am the walrus))

#t

Write a procedure that takes a pattern and a directory name as arguments, and returns a stream of lines

(with their keys attached) that match the pattern.

3(b). Try your pattern recognition program on the Project Gutenberg text with patterns to find some of

these phrases originally attributed to Shakespeare:

pomp and circumstance

foregone conclusion

full circle

the makings of

method in the madness

neither rhyme nor reason

one fell swoop

seen better days

it smells to heaven

a sorry sight

a spotless reputation

strange bedfellows

77


