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What's left to learn in CS?
• Designing and testing software
• Algorithms for solving known problems
• Low-level representations of data and programs
• Discrete mathematics and analysis of programs
• Programming languages
• User interface design
• Networking
• Systems
• Artificial intelligence
• Lots of other subfields: graphics, theory, scientific computing, security, etc.
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Important Ideas Take a Long Time to Learn

• It's a good idea to study subjects other than computer science.

• Who you spend your time with is important.

• Ideas come from people, and people think from experience.

• Don't compare.

• Contribute to the world.
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Thanks for being amazing! 

Please stay for the HKN survey.


