61A Lecture 35

Wednesday, December 4

Announcements

- Homework 11 due Thursday 12/5 @ 11:59pm.
- No video of lecture on Friday 12/6.
-Come to class and take the final survey.
"There will be a screencast of live lecture (as always).
-Screencasts: http://www.youtube.com/view_play list?p=-XXv-cvA_iCIEwJhyDVdyLMCiimv6Tup
- Homework 12 due Tuesday 12/10 @ 11:59pm.
-All you have to do is vote on your favorite recursive art.
- 29 review sessions next week! Come learn about the topics that interest you the most.
-See http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/final.html for the schedule.

Natural Language Processing

Ambiguity in Natural Language

Unlike programming languages, natural languages are ambiguous.

Syntactic ambiguity: TEACHER STRIKES IDLE KIDS HOSPITALS ARE SUED BY 7 FOOT DOCTORS

Semantic ambiguity: IRAQI HEAD SEEKS ARMS

STOLEN PAINTING FOUND BY TREE

Tasks in Natural Language Processing

Research in natural language processing (NLP) focuses on tasks that involve language:
Question answering. "Harriet Boyd Hawes was the first woman to discover and excavate a Minoan settlement on this island." Watson says, "What is Crete?"

Machine Translation. "Call a spade a spade!" Google Translate says, "Appeler un chat un chat."

Semantic Parsing. "When's my birthday?" Siri says, "Your birthday is May 1st."

Much attention is given to more focused language analysis problems:
Coreference Resolution: Do the phrases "Barack Obama" and "the president" co-refer?
Syntactic Parsing: In "I saw the man with the telescope," who has the telescope?
Word Sense Disambiguation: Does the "bank of the Seine" have an ATM?
Named-Entity Recognition: What names are in "Did van Gogh paint the Bank of the Seine?"

Machine Translation

Machine Translation

Target language corpus gives examples of well-formed sentences

I will get to it later	See you later	He will do it

Parallel corpus gives translation examples
I will do it gladly
Yo lo haré de muy buen grado

You will see later
Después lo veras

Machine translation system:

Yo lo haré después
Novel Sentence

Syntactic Agreement in Translation

You will see later
Después lo veras

Machine translation system:
$\frac{S}{\text { Yo lo haré después }}$

Model of translation

Syntactic Reordering in Translation

Context-Free Grammars

A Context-Free Grammar Models Language Generation

A grammar contains rules that hierarchically generate word sequences using syntactic tags.

Grammar Rules

$$
\begin{aligned}
& S \rightarrow N P V P \\
& N P \rightarrow P R P \\
& V P \rightarrow V B \\
& V P \rightarrow V B N P
\end{aligned}
$$

Lexicon

$$
\begin{aligned}
\text { PRP } & \rightarrow \text { I } \\
\text { PRP } & \rightarrow \text { you } \\
\text { VB } & \rightarrow \text { know } \\
\text { VB } & \rightarrow \text { help }
\end{aligned}
$$

Probabilistic Context-Free Grammars

Grammar Rules

$$
S \rightarrow N P V P
$$

$$
N P \rightarrow P R P
$$

0.2	VP $\rightarrow V B$
0.7	$V P \rightarrow V B N P$
0.1	$V P \rightarrow M D ~ V P$

Lexicon

$$
\begin{aligned}
& \text { PRP } \rightarrow \text { I } \\
& \text { PRP } \rightarrow \text { you } \\
& \text { VB } \rightarrow \text { know } \\
& \text { VB } \rightarrow \text { help } \\
& \text { MD } \rightarrow \text { can }
\end{aligned}
$$

Learning Probabilistic Context-Free Grammars

Parsing with Probabilistic Context-Free Grammars

Parsing is Maximizing Likelihood

A probabilistic context-free grammar can be used to select a parse for a sentence.

Parse by finding the tree with the highest total probability that yields the sentence.
Algorithm: Try every rule over every span. Match the lexicon to each word.

Tree Transformations

Reordering Modal Arguments

