
61A Lecture 34

Monday, December 2

Announcements

• Recursive art contest entries due Monday 12/2 @ 11:59pm

• Guerrilla section about logic programming on Monday 12/2 1pm-3:30pm in 273 Soda

• Homework 11 due Thursday 12/5 @ 11:59pm

• No video of lecture on Friday 12/6

!Come to class and take the final survey

!There will be a screencast of live lecture (as always)

!Screencasts: http://www.youtube.com/view_play_list?p=-XXv-cvA_iCIEwJhyDVdyLMCiimv6Tup

2

Unix

Systems

Systems research enables the development of applications by defining and
implementing abstractions:

• Operating systems provide a stable, consistent interface to unreliable,
inconsistent hardware.

• Networks provide a simple, robust data transfer interface to constantly evolving
communications infrastructure.

• Databases provide a declarative interface to software that stores and retrieves
information efficiently.

• Distributed systems provide a unified interface to a cluster of multiple machines.

A unifying property of effective systems:

4

Hide complexity, but retain flexibility

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

The standard streams in a Unix-like operating system are similar to Python iterators.

5

standard input
standard output

process

standard error

Text input
Text output

(Demo)

ls *.py | cut -f 1 -d '.' | grep hw | cut -c 3- | sort -n

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

(Demo)

The values sys.stdin and sys.stdout also provide access to the
Unix standard streams as files.

A Python file is an interface that supports iteration, read, and
write methods.

Using these "files" takes advantage of the operating system
standard stream abstraction.

(Demo)

6

MapReduce

Big Data Processing

MapReduce is a framework for batch processing of Big Data.

• Framework: A system used by programmers to build applications.

• Batch processing: All the data is available at the outset, and results aren't
used until processing completes.

• Big Data: Used to describe data sets so large that they can reveal new facts
about the world, usually from statistical analysis.

The MapReduce idea:

• Data sets are too big to be analyzed by one machine.

• Using multiple machines has the same complications, regardless of the
application.

• Pure functions enable an abstraction barrier between data processing logic
and coordinating a distributed application.

(Demo)

8

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values, each associated with that intermediate key.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

o: 5

u: 1

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values, each associated with that intermediate key.

10

MapReduce Execution Model

Execution Model

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html
12

Parallel Execution Implementation

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

A "task" is a Unix
process running on a

machine

Map phase
Reduce phase

Shuffle

13

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently.

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key.

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel.

• Referential transparency: a call expression can be replaced by its value
(or vis versa) without changing the program.

In MapReduce, these functional programming ideas allow:

• Consistent results, however computation is partitioned.

• Re-computation and caching of results, as needed.

14

Map phase
Reduce phase

Shuffle

MapReduce Applications

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Mapper inputs are lines of text
provided to standard input

Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit, values_by_key

Reducer

for key, value_iterator in values_by_key(sys.stdin):
 emit(key, sum(value_iterator))

Takes and returns iterators

Input: lines of text representing key-value pairs, grouped by key
Output: Iterator over (key, value_iterator) pairs that give all
values for each key

17

MapReduce Benefits

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.

• The framework can run multiple copies of a task and keep the result of the one that
finishes first.

Network locality: Data transfer is expensive.

• The framework tries to schedule map tasks on the machines that hold the data to be
processed.

Monitoring: Will my job finish before dinner?!?

• The framework provides a web-based interface describing jobs.

(Demo)

19

