
61A Lecture 34

Monday, December 2

Announcements

2

Announcements

• Recursive art contest entries due Monday 12/2 @ 11:59pm

2

Announcements

• Recursive art contest entries due Monday 12/2 @ 11:59pm

• Guerrilla section about logic programming on Monday 12/2 1pm-3:30pm in 273 Soda

2

Announcements

• Recursive art contest entries due Monday 12/2 @ 11:59pm

• Guerrilla section about logic programming on Monday 12/2 1pm-3:30pm in 273 Soda

• Homework 11 due Thursday 12/5 @ 11:59pm

2

Announcements

• Recursive art contest entries due Monday 12/2 @ 11:59pm

• Guerrilla section about logic programming on Monday 12/2 1pm-3:30pm in 273 Soda

• Homework 11 due Thursday 12/5 @ 11:59pm

• No video of lecture on Friday 12/6

2

Announcements

• Recursive art contest entries due Monday 12/2 @ 11:59pm

• Guerrilla section about logic programming on Monday 12/2 1pm-3:30pm in 273 Soda

• Homework 11 due Thursday 12/5 @ 11:59pm

• No video of lecture on Friday 12/6

!Come to class and take the final survey

2

Announcements

• Recursive art contest entries due Monday 12/2 @ 11:59pm

• Guerrilla section about logic programming on Monday 12/2 1pm-3:30pm in 273 Soda

• Homework 11 due Thursday 12/5 @ 11:59pm

• No video of lecture on Friday 12/6

!Come to class and take the final survey

!There will be a screencast of live lecture (as always)

2

Announcements

• Recursive art contest entries due Monday 12/2 @ 11:59pm

• Guerrilla section about logic programming on Monday 12/2 1pm-3:30pm in 273 Soda

• Homework 11 due Thursday 12/5 @ 11:59pm

• No video of lecture on Friday 12/6

!Come to class and take the final survey

!There will be a screencast of live lecture (as always)

!Screencasts: http://www.youtube.com/view_play_list?p=-XXv-cvA_iCIEwJhyDVdyLMCiimv6Tup

2

Unix

Systems

4

Systems

Systems research enables the development of applications by defining and
implementing abstractions:

4

Systems

Systems research enables the development of applications by defining and
implementing abstractions:

• Operating systems provide a stable, consistent interface to unreliable,
inconsistent hardware.

4

Systems

Systems research enables the development of applications by defining and
implementing abstractions:

• Operating systems provide a stable, consistent interface to unreliable,
inconsistent hardware.

• Networks provide a simple, robust data transfer interface to constantly evolving
communications infrastructure.

4

Systems

Systems research enables the development of applications by defining and
implementing abstractions:

• Operating systems provide a stable, consistent interface to unreliable,
inconsistent hardware.

• Networks provide a simple, robust data transfer interface to constantly evolving
communications infrastructure.

• Databases provide a declarative interface to software that stores and retrieves
information efficiently.

4

Systems

Systems research enables the development of applications by defining and
implementing abstractions:

• Operating systems provide a stable, consistent interface to unreliable,
inconsistent hardware.

• Networks provide a simple, robust data transfer interface to constantly evolving
communications infrastructure.

• Databases provide a declarative interface to software that stores and retrieves
information efficiently.

• Distributed systems provide a unified interface to a cluster of multiple machines.

4

Systems

Systems research enables the development of applications by defining and
implementing abstractions:

• Operating systems provide a stable, consistent interface to unreliable,
inconsistent hardware.

• Networks provide a simple, robust data transfer interface to constantly evolving
communications infrastructure.

• Databases provide a declarative interface to software that stores and retrieves
information efficiently.

• Distributed systems provide a unified interface to a cluster of multiple machines.

A unifying property of effective systems:

4

Systems

Systems research enables the development of applications by defining and
implementing abstractions:

• Operating systems provide a stable, consistent interface to unreliable,
inconsistent hardware.

• Networks provide a simple, robust data transfer interface to constantly evolving
communications infrastructure.

• Databases provide a declarative interface to software that stores and retrieves
information efficiently.

• Distributed systems provide a unified interface to a cluster of multiple machines.

A unifying property of effective systems:

4

Hide complexity, but retain flexibility

The Unix Operating System

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

process

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

standard input process

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

standard input process

Text input

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

standard input
standard output

process

Text input

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

standard input
standard output

process

Text input
Text output

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

5

standard input
standard output

process

standard error

Text input
Text output

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

The standard streams in a Unix-like operating system are similar to Python iterators.

5

standard input
standard output

process

standard error

Text input
Text output

The Unix Operating System

Essential features of the Unix operating system (and variants):

• Portability: The same operating system on different hardware.

• Multi-Tasking: Many processes run concurrently on a machine.

• Plain Text: Data is stored and shared in text format.

• Modularity: Small tools are composed flexibly via pipes.

“We should have some ways of coupling programs like [a] garden hose – screw in another
segment when it becomes necessary to massage data in another way,” Doug McIlroy in 1964.

The standard streams in a Unix-like operating system are similar to Python iterators.

5

standard input
standard output

process

standard error

Text input
Text output

(Demo)

ls *.py | cut -f 1 -d '.' | grep hw | cut -c 3- | sort -n

Python Programs in a Unix Environment

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

(Demo)

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

(Demo)

The values sys.stdin and sys.stdout also provide access to the
Unix standard streams as files.

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

(Demo)

The values sys.stdin and sys.stdout also provide access to the
Unix standard streams as files.

A Python file is an interface that supports iteration, read, and
write methods.

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

(Demo)

The values sys.stdin and sys.stdout also provide access to the
Unix standard streams as files.

A Python file is an interface that supports iteration, read, and
write methods.

Using these "files" takes advantage of the operating system
standard stream abstraction.

6

Python Programs in a Unix Environment

The built-in input function reads a line from standard input.

The built-in print function writes a line to standard output.

(Demo)

The values sys.stdin and sys.stdout also provide access to the
Unix standard streams as files.

A Python file is an interface that supports iteration, read, and
write methods.

Using these "files" takes advantage of the operating system
standard stream abstraction.

(Demo)

6

MapReduce

Big Data Processing

8

Big Data Processing

MapReduce is a framework for batch processing of Big Data.

8

Big Data Processing

MapReduce is a framework for batch processing of Big Data.

• Framework: A system used by programmers to build applications.

8

Big Data Processing

MapReduce is a framework for batch processing of Big Data.

• Framework: A system used by programmers to build applications.

• Batch processing: All the data is available at the outset, and results aren't
used until processing completes.

8

Big Data Processing

MapReduce is a framework for batch processing of Big Data.

• Framework: A system used by programmers to build applications.

• Batch processing: All the data is available at the outset, and results aren't
used until processing completes.

• Big Data: Used to describe data sets so large that they can reveal new facts
about the world, usually from statistical analysis.

8

Big Data Processing

MapReduce is a framework for batch processing of Big Data.

• Framework: A system used by programmers to build applications.

• Batch processing: All the data is available at the outset, and results aren't
used until processing completes.

• Big Data: Used to describe data sets so large that they can reveal new facts
about the world, usually from statistical analysis.

The MapReduce idea:

8

Big Data Processing

MapReduce is a framework for batch processing of Big Data.

• Framework: A system used by programmers to build applications.

• Batch processing: All the data is available at the outset, and results aren't
used until processing completes.

• Big Data: Used to describe data sets so large that they can reveal new facts
about the world, usually from statistical analysis.

The MapReduce idea:

• Data sets are too big to be analyzed by one machine.

8

Big Data Processing

MapReduce is a framework for batch processing of Big Data.

• Framework: A system used by programmers to build applications.

• Batch processing: All the data is available at the outset, and results aren't
used until processing completes.

• Big Data: Used to describe data sets so large that they can reveal new facts
about the world, usually from statistical analysis.

The MapReduce idea:

• Data sets are too big to be analyzed by one machine.

• Using multiple machines has the same complications, regardless of the
application.

8

Big Data Processing

MapReduce is a framework for batch processing of Big Data.

• Framework: A system used by programmers to build applications.

• Batch processing: All the data is available at the outset, and results aren't
used until processing completes.

• Big Data: Used to describe data sets so large that they can reveal new facts
about the world, usually from statistical analysis.

The MapReduce idea:

• Data sets are too big to be analyzed by one machine.

• Using multiple machines has the same complications, regardless of the
application.

• Pure functions enable an abstraction barrier between data processing logic
and coordinating a distributed application.

8

Big Data Processing

MapReduce is a framework for batch processing of Big Data.

• Framework: A system used by programmers to build applications.

• Batch processing: All the data is available at the outset, and results aren't
used until processing completes.

• Big Data: Used to describe data sets so large that they can reveal new facts
about the world, usually from statistical analysis.

The MapReduce idea:

• Data sets are too big to be analyzed by one machine.

• Using multiple machines has the same complications, regardless of the
application.

• Pure functions enable an abstraction barrier between data processing logic
and coordinating a distributed application.

(Demo)

8

MapReduce Evaluation Model

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

Google MapReduce
Is a Big Data framework
For batch processing

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

Map phase: Apply a mapper function to inputs, emitting intermediate key-value pairs.

• The mapper takes an iterator over inputs, such as text lines.

• The mapper yields zero or more key-value pairs per input.

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values, each associated with that intermediate key.

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

9

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values, each associated with that intermediate key.

10

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values, each associated with that intermediate key.

10

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values, each associated with that intermediate key.

10

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values, each associated with that intermediate key.

10

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values, each associated with that intermediate key.

10

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

o: 5

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values, each associated with that intermediate key.

10

reducer
e: 5

reducer
a: 6

MapReduce Evaluation Model

mapperGoogle MapReduce
Is a Big Data framework
For batch processing

o: 2
a: 1
u: 1
e: 3

i: 1
a: 4
e: 1
o: 1

a: 1
o: 2
e: 1
i: 1

a: 4
a: 1
a: 1
e: 1
e: 3
e: 1
...

i: 2

o: 5

u: 1

Reduce phase: For each intermediate key, apply a reducer function to accumulate all
values associated with that key.

• The reducer takes an iterator over key-value pairs.

• All pairs with a given key are consecutive.

• The reducer yields 0 or more values, each associated with that intermediate key.

10

MapReduce Execution Model

Execution Model

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0007.html
12

Parallel Execution Implementation

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html
13

Parallel Execution Implementation

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

A "task" is a Unix
process running on a

machine

13

Parallel Execution Implementation

http://research.google.com/archive/mapreduce-osdi04-slides/index-auto-0008.html

A "task" is a Unix
process running on a

machine

Map phase
Reduce phase

Shuffle

13

MapReduce Assumptions

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently.

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently.

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key.

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently.

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key.

Benefits of functional programming:

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently.

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key.

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel.

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently.

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key.

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel.

• Referential transparency: a call expression can be replaced by its value
(or vis versa) without changing the program.

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently.

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key.

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel.

• Referential transparency: a call expression can be replaced by its value
(or vis versa) without changing the program.

In MapReduce, these functional programming ideas allow:

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently.

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key.

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel.

• Referential transparency: a call expression can be replaced by its value
(or vis versa) without changing the program.

In MapReduce, these functional programming ideas allow:

• Consistent results, however computation is partitioned.

14

Map phase
Reduce phase

Shuffle

MapReduce Assumptions

Constraints on the mapper and reducer:

• The mapper must be equivalent to applying a deterministic pure function
to each input independently.

• The reducer must be equivalent to applying a deterministic pure function
to the sequence of values for each key.

Benefits of functional programming:

• When a program contains only pure functions, call expressions can be
evaluated in any order, lazily, and in parallel.

• Referential transparency: a call expression can be replaced by its value
(or vis versa) without changing the program.

In MapReduce, these functional programming ideas allow:

• Consistent results, however computation is partitioned.

• Re-computation and caching of results, as needed.

14

Map phase
Reduce phase

Shuffle

MapReduce Applications

Python Example of a MapReduce Application

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

Mapper

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper
Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Mapper inputs are lines of text
provided to standard input

Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit

for line in sys.stdin:
 emit_vowels(line)

def emit_vowels(line):
 for vowel in 'aeiou':
 count = line.count(vowel)
 if count > 0:
 emit(vowel, count)

Mapper

The emit function outputs a key
and value as a line of text to

standard output

Mapper inputs are lines of text
provided to standard input

Tell Unix: This is Python 3 code

16

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

Reducer

17

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit, values_by_key

Reducer

17

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit, values_by_key

Reducer

Takes and returns iterators

17

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit, values_by_key

Reducer

Takes and returns iterators

Input: lines of text representing key-value pairs, grouped by key
Output: Iterator over (key, value_iterator) pairs that give all
values for each key

17

Python Example of a MapReduce Application

The mapper and reducer are both self-contained Python programs.

• Read from standard input and write to standard output!

#!/usr/bin/env python3

import sys
from mr import emit, values_by_key

Reducer

for key, value_iterator in values_by_key(sys.stdin):
 emit(key, sum(value_iterator))

Takes and returns iterators

Input: lines of text representing key-value pairs, grouped by key
Output: Iterator over (key, value_iterator) pairs that give all
values for each key

17

MapReduce Benefits

What Does the MapReduce Framework Provide

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

• The MapReduce framework automatically re-runs failed tasks.

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.

• The framework can run multiple copies of a task and keep the result of the one that
finishes first.

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.

• The framework can run multiple copies of a task and keep the result of the one that
finishes first.

Network locality: Data transfer is expensive.

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.

• The framework can run multiple copies of a task and keep the result of the one that
finishes first.

Network locality: Data transfer is expensive.

• The framework tries to schedule map tasks on the machines that hold the data to be
processed.

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.

• The framework can run multiple copies of a task and keep the result of the one that
finishes first.

Network locality: Data transfer is expensive.

• The framework tries to schedule map tasks on the machines that hold the data to be
processed.

Monitoring: Will my job finish before dinner?!?

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.

• The framework can run multiple copies of a task and keep the result of the one that
finishes first.

Network locality: Data transfer is expensive.

• The framework tries to schedule map tasks on the machines that hold the data to be
processed.

Monitoring: Will my job finish before dinner?!?

• The framework provides a web-based interface describing jobs.

19

What Does the MapReduce Framework Provide

Fault tolerance: A machine or hard drive might crash.

• The MapReduce framework automatically re-runs failed tasks.

Speed: Some machine might be slow because it's overloaded.

• The framework can run multiple copies of a task and keep the result of the one that
finishes first.

Network locality: Data transfer is expensive.

• The framework tries to schedule map tasks on the machines that hold the data to be
processed.

Monitoring: Will my job finish before dinner?!?

• The framework provides a web-based interface describing jobs.

(Demo)

19

