
61A Lecture 33

Monday, November 25

Announcements

• Homework 10 due Tuesday 11/26 @ 11:59pm

• No lecture on Wednesday 11/27 or Friday 11/29

• No discussion section Wednesday 11/27 through Friday 11/29

!Lab will be held on Wednesday 11/27

• Recursive art contest entries due Monday 12/2 @ 11:59pm

• Guerrilla section about logic programming coming soon...

• Homework 11 due Thursday 12/5 @ 11:59pm

2

Addition in Logic

(Demo)

Distributed Computing

Distributed Computing

A distributed computing application consists of multiple programs running on multiple
computers that together coordinate to perform some task.

• Computation is performed in parallel by many computers.

• Information can be restricted to certain computers.

• Redundancy and geographic diversity improve reliability.

Characteristics of distributed computing:

• Computers are independent — they do not share memory.

• Coordination is enabled by messages passed across a network.

• Individual programs have differentiating roles.

Distributed computing for large-scale data processing:

• Databases respond to queries over a network.

• Data sets can be partitioned across multiple machines (next lecture).

5

Network Messages

Computers communicate via messages: sequences of bytes transmitted over a network.

Messages can serve many purposes:

• Send data to another computer

• Request data from another computer

• Instruct a program to call a function on some arguments.

• Transfer a program to be executed by another computer.

Messages conform to a message protocol adopted by both the sender (to encode the message) &
receiver (to interpret the message).

• For example, bits at fixed positions may have fixed meanings.

• Components of a message may be separated by delimiters.

• Protocols are designed to be implemented by many different programming languages on many
different types of machines.

6

Internet Protocol

http://en.wikipedia.org/wiki/IPv4

The Internet Protocol

The Internet Protocol (IP) specifies how to transfer packets of data among networks.

• Networks are inherently unreliable at any point.

• The structure of a network is dynamic, not fixed.

• No system exists to monitor or track communications.

Packets are forwarded toward their destination on a best effort basis.

Programs that use IP typically need a policy for handling lost packets.

Where to send
the packet

Where to send
error reports

Packets can't
survive forever

The packet knows
its sizeIPv4

8

Max length:
216 = 65,536

E.g.,
192.168.1.1

All machines
know IPv4

Decremented
on forwarding

Transmission Control Protocol

The design of the Internet Protocol (IPv4) imposes constraints:

• Packets are limited to 65,535 bytes each.

• Packets may arrive in a different order than they were sent.

• Packets may be duplicated or lost.

The Transmission Control Protocol (TCP) improves reliability:

• Ordered, reliable transmission of arbitrary byte streams.

• Implemented using the IP. Every TCP connection involves sending IP packets.

• Each packet in a TCP session has a sequence number:
!The receiver can correctly order packets that arrive out of order.
!The receiver can ignore duplicate packets.

• All received packets are acknowledged; both parties know that transmission succeeded.

• Packets that aren't acknowledged are sent repeatedly.

The socket module in Python implements the TCP.

10

Transmission Control Protocol

TCP Handshakes

All TCP connections begin with a sequence of messages called a "handshake" which
verifies that communication is possible.

"Can you hear me now?" Let's design a handshake protocol.

Handshake Goals:

• Computer A knows that it can send data to and receive data from Computer B.

• Computer B knows that it can send data to and receive data from Computer A.

• Lots of separate connections can exist without any confusion.

• The number of required messages is minimized.

Communication Rules:

• Computer A can send an initial message to Computer B requesting a new connection.

• Computer B can respond to messages from Computer A.

• Computer A can respond to messages from Computer B.

11

Message Sequence of a TCP Connection

Computer A Computer B

Synchronization request

Acknowledgement & synchronization request

Acknowledgement

Termination signal
Acknowledgement & termination signal

Acknowledgement

Establishes packet numbering
system

12

..

Data message from A to B

Data message from B to A

..

Acknowledgement

Acknowledgement

..

Client/Server Architecture

The Client/Server Architecture

One server provides information
to multiple clients through
request and response messages.

Server role: Respond to service
requests with requested
information.

Client role: Request information
and make use of the response.

Abstraction: The client knows
what service a server provides,
but not how it is provided.

14

Client/Server Example: The World Wide Web

The client is a web browser (e.g., Firefox):

• Request content for a location.

• Interpret the content for the user.

The server is a web server:

• Interpret requests and respond with content.

HTTP GET request of content

HTTP response with content

Follow-up requests for auxiliary content
...

Web browser Web server

TCP Initialization Handshake

15

The Hypertext Transfer Protocol

The Hypertext Transfer Protocol (HTTP) is a protocol designed to implement a Client/
Server architecture.

Browser issues a GET request to a server at www.nytimes.com for the content (resource)
at location "pages/todayspaper".

Uniform resource locator (URL)

Server response contains more than just the resource itself:

• Status code, e.g. 200 OK, 404 Not Found, 403 Forbidden, etc.

• Date of response; type of server responding

• Last-modified time of the resource

• Type of content and length of content

16

Properties of a Client/Server Architecture

Benefits:

• Creates a separation of concerns among components.

• Enforces an abstraction barrier between client and server.

• A centralized server can reuse computation across clients.

Liabilities:

• A single point of failure: the server.

• Computing resources become scarce when demand increases.

Common use cases:

• Databases — The database serves responses to query requests.

• Open Graphics Library (OpenGL) — A graphics processing unit (GPU) serves images to a
central processing unit (CPU).

• Internet file and resource transfer: HTTP, FTP, email, etc.

17

Peer-to-Peer Architecture

The Peer-to-Peer Architecture

All participants in a distributed application contribute computational resources:
processing, storage, and network capacity.

Messages are relayed through a network of participants.

Each participant has only partial knowledge of the network.

http://en.wikipedia.org/wiki/File:P2P-network.svg 19

Network Structure Concerns

Some data transfers on the Internet are faster than others.

The time required to transfer a message through a peer-to-peer network depends on the
route chosen.

http://en.wikipedia.org/wiki/File:P2P-network.svg 20

Example: Skype

Skype is a Voice Over IP (VOIP) system that uses a hybrid peer-to-peer architecture.

Login & contacts are handled via a centralized server.

Conversations between two computers that cannot send messages to each other directly
are relayed through supernodes.

Any Skype client with its own IP address may be a supernode.

21

Client A Client B

Client C
A client not behind a
firewall may be used

as a supernode

Clients behind
firewalls cannot

communicate directly

