61A Lecture 32

Friday, November 22

Announcements

Announcements

-Homework 10 due Tuesday 11/26 @ 11:59pm

Announcements

- Homework 10 due Tuesday 11/26 @ 11:59pm
- No lecture on Wednesday $11 / 27$ or Friday $11 / 29$

Announcements

- Homework 10 due Tuesday 11/26 @ 11:59pm
- No lecture on Wednesday $11 / 27$ or Friday $11 / 29$
-No discussion section Wednesday 11/27 through Friday 11/29

Announcements

- Homework 10 due Tuesday 11/26 @ 11:59pm
- No lecture on Wednesday $11 / 27$ or Friday $11 / 29$
- No discussion section Wednesday $11 / 27$ through Friday 11/29
-Lab will be held on Wednesday 11/27

Announcements

- Homework 10 due Tuesday 11/26 @ 11:59pm
- No lecture on Wednesday $11 / 27$ or Friday $11 / 29$
-No discussion section Wednesday 11/27 through Friday 11/29
-Lab will be held on Wednesday 11/27
- Recursive art contest entries due Monday 12/2 @ 11:59pm

Appending Lists

Lists in Logic

Lists in Logic

Expressions begin with query or fact followed by relations.

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x))

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x)) Simple fact: Conclusion

Lists in Logic

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x)) Simple fact: Conclusion
(fact (append-to-form (?a . ?r) ?y (?a . ?z))
(append-to-form ?r ?y ?z))

Lists in Logic

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x)) Simple fact: Conclusion
(fact (append-to-form (?a. ?r) ?y (?a . ?z)) Conclusion (append-to-form ?r ?y ?z))

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x)) Simple fact: Conclusion
(fact (append-to-form (?a. ?r) ?y (?a. ?z)) Conclusion

Lists in Logic

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x)) Simple fact: Conclusion
(fact (append-to-form (?a . ?r) ?y (?a . ?z)) Conclusion
(append-to-form ?r ?y ?z) Hypothesis
(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

Lists in Logic

```
Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
    (fact (append-to-form () ?x ?x)) Simple fact: Conclusion
    (fact (append-to-form (?a . ?r) ?y (?a . ?z)) Conclusion
            (append-to-form ?r ?y ?z Hypothesis
```

 (query (append-to-form ?left (c d) (e b c d)))
 Success!
 left: (e b)
 In a fact, the first relation is the conclusion and the rest are hypotheses.

Lists in Logic

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x)) Simple fact: Conclusion

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)
In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.

Lists in Logic

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x)) Simple fact: Conclusion

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)
In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
(fact (append-to-form () ?x ?x)) Simple fact: Conclusion

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b) $\left\{\begin{array}{c}\text { What ?left can append with } \\ (\mathrm{c} \text { d) to create (e b c d) }\end{array}\right.$
In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists. () (c d) => (c d)

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b) $\left\{\begin{array}{c}\text { What ?left can append with } \\ (\mathrm{c} \text { d) to create (e b c d) }\end{array}\right.$
In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

```
Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
() (c d) ?x (cc
    (fact (append-to-form () ?x ?x)) Simple fact: Conclusion
    (fact (append-to-form (?a . ?r) ?y (?a . ?z)) Conclusion
            (append-to-form ?r ?y ?z ) Hypothesis
    (query (append-to-form ?left (c d) (e b c d)))
    Success!
    left: (e b) {}\begin{array}{l}{\mathrm{ What ?left can append with }}\\{(c d) to create (e b c d)}
In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.
```


Lists in Logic

```
Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
    (fact (append-to-form () ?x ?x)) Simple fact: Conclusion
    (fact (append-to-form (?a . ?r) ?y (?a . ?z)) Conclusion
            (append-to-form ?r ?y ?z ) Hypothesis
                                    () (c d) lo> (c d)
                                    (b) (c d) => (b c d)
    (query (append-to-form ?left (c d) (e b c d)))
    Success!
    left: (e b) {}\begin{array}{l}{\mathrm{ What ?left can append with }}\\{(c d) to create (e b c d)}
In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.
```


Lists in Logic

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b) $\left\{\begin{array}{l}\text { What ?left can append with } \\ (c \mathrm{~d}) \text { to create (e b c d) }\end{array}\right.$

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

```
Expressions begin with query or fact followed by relations.
Expressions and their relations are Scheme lists.
    (fact (append-to-form () ?x ?x)) Simple fact: Conclusion
    (fact (append-to-form (?a . ?r) ?y (?a . ?z)) Conclusion
() \(\begin{aligned} & \text { (c d })=\left(\begin{array}{ll}c & d\end{array}\right) .\end{aligned}\)
(b) (c d) \(=>(b \operatorname{cc})\)
(e b) (c d) \(=>(e \quad b \quad c \quad d)\)
(query (append-to-form ?left (c d) (e b c d))) (e. (b)) (c d) => (e. (b c d))
```

Success!
left: (e b) $\left\{\begin{array}{l}\text { What ?left can append with } \\ (\mathrm{c} \text { d) to create (e b c d) }\end{array}\right.$
In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

 Success! (c d) to create (e b c d)
In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

left: (e b) $\left\{\begin{array}{c}\text { What ?left can append with } \\ (\mathrm{c} \text { d) to create (e b c d) }\end{array}\right.$
In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Lists in Logic

In a fact, the first relation is the conclusion and the rest are hypotheses.
In a query, all relations must be satisfied.
The interpreter lists all bindings of variables to values that it can find to satisfy the query.

Permuting Lists

Anagrams in Logic

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.
(fact (insert ?a ?r (?a . ?r)))

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Element

(fact (insert ?a ?r (?a . ?r)))

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

```
    Element List List with ?a in front
(fact (insert ?a ?r (?a . ?r)))
(fact (insert ?a (?b : ?r) (?b . ?s))
```


Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

```
    Element List List with ?a in front
(fact (insert ?a ?r (?a . ?r)) )
(fact (insert ?a (?b . ?r) (?b . ?s))
    (insert ?a ?r ?s))
                            List with ?a somewhere
```


Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
-The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
-The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
-The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
-The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
a r t
- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
r t
ar t
- The first element of the list inserted into an anagram of the rest of the list.

(fact (insert ?a ?r (?a . ?r))) Bigger list with ?a somewhere

(fact (anagram () ()))
List with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

(fact (anagram (?a . ?r) ?b)
(insert ?a ?s ?b)
(anagram ?r ?s))

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.
$a \mid r t$
- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.

$$
\mathrm{a} \mid r \mathrm{t}
$$

r t
art
rat
r ta
t r
(fact (anagram () ()))
List with ?a somewhere

```
(fact (anagram (?a . ?r) ?b)
    (insert ?a ?s ?b)
    (anagram ?r ?s))
```


Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.

$$
\mathrm{a} \mid r \mathrm{t}
$$

- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.

$$
a \mid r t
$$

$$
r t
$$

ar t
rat
r ta
t r
at r
tar

- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.

$$
\mathrm{a} \mid r \mathrm{t}
$$

- The first element of the list inserted into an anagram of the rest of the list.

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

- The empty list for an empty list.

$$
\mathrm{a} \mid r \mathrm{t}
$$

$$
r t
$$

$$
\operatorname{art} t
$$

rat
r ta
t r
at r
tar
t ra

Unification

Pattern Matching

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations. Unification is finding an assignment to variables that makes two relations the same.

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations. Unification is finding an assignment to variables that makes two relations the same. $\left.\left(\begin{array}{ll}(a & b\end{array}\right) \mathrm{c}(\mathrm{a} \quad \mathrm{b}) \mathrm{r}\right)$

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations. Unification is finding an assignment to variables that makes two relations the same.

```
( (a b) c (a b ) )
( ?x C ?x )
```

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations. Unification is finding an assignment to variables that makes two relations the same.
$\left.\begin{array}{cccc}\left(\begin{array}{ccc}(a b\end{array}\right) & c & (a \quad b) \\ \left(\begin{array}{ccc}a & c & ? x\end{array}\right)\end{array}\right\rangle \operatorname{True},\{x:(a b)\}$

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.
Unification is finding an assignment to variables that makes two relations the same.
$\left.\begin{array}{ccc}\left(\begin{array}{ccc}a & b\end{array}\right) & c & (a \quad b) \\ \left(\begin{array}{ccc}a & c & ? x\end{array}\right)\end{array}\right\rangle \operatorname{True},\{x:(a b)\}$
$\left(\begin{array}{ll}(a b) & b \\ (a b\end{array}\right)$

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.
Unification is finding an assignment to variables that makes two relations the same.
$\left.\begin{array}{ccc}\left(\begin{array}{ccc}a & b\end{array}\right) & c & \left(\begin{array}{cc}a & b\end{array}\right) \\ \left(\begin{array}{ccc}a & c & ? x\end{array}\right)\end{array}\right\rangle \operatorname{True},\{x:(a b)\}$
$\left(\begin{array}{ll}(a b) & b \\ (a b)\end{array}\right)$
($(\mathrm{a}$? y$) \quad$? $\mathrm{z}(\mathrm{a} \mathrm{b})$)

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.
Unification is finding an assignment to variables that makes two relations the same.
$\left.\begin{array}{ccc}\left(\begin{array}{ccc}a & b\end{array}\right) & c & (a \quad b) \\ \left(\begin{array}{ccc}a & c & ? x\end{array}\right)\end{array}\right\rangle \operatorname{True},\{x:(a b)\}$

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.
Unification is finding an assignment to variables that makes two relations the same.
$\left.\begin{array}{ccc}\left(\begin{array}{ccc}a & b\end{array}\right) & c & (a \quad b) \\ \left(\begin{array}{ccc}a & c & ? x\end{array}\right)\end{array}\right\rangle \operatorname{True},\{x:(a b)\}$
$\left(\begin{array}{ll}(a b) & b \\ (a b\end{array}\right)$
(a ? y) $? \mathrm{z}(\mathrm{a} \quad \mathrm{b})$)
\rangle True, $\{y: b, z: c\}$

$$
\left.\begin{array}{c}
\left(\begin{array}{ccc}
a & b
\end{array}\right) c \\
\left(\begin{array}{cc}
a & b
\end{array}\right) \\
\left(\begin{array}{l}
2
\end{array}\right. \\
? x
\end{array}\right)
$$

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations. Unification is finding an assignment to variables that makes two relations the same.

$$
\begin{aligned}
& \left.\begin{array}{ccc}
\left(\begin{array}{ccc}
(a & b
\end{array}\right) & c & \left(\begin{array}{cc}
a & b
\end{array}\right) \\
\left(\begin{array}{ccc}
& c & ? x
\end{array}\right)
\end{array}\right\rangle \operatorname{True},\left\{x:\left(\begin{array}{ll}
a & b
\end{array}\right)\right\}
\end{aligned}
$$

$$
\begin{aligned}
& \left.\begin{array}{ccc}
\left(\begin{array}{ccc}
(a & b
\end{array}\right) & \left(\begin{array}{cc}
a & b
\end{array}\right) \\
\left(\begin{array}{c}
2
\end{array}\right. & ? x & ? x
\end{array}\right) \quad \text { False }
\end{aligned}
$$

Unification

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

$$
\begin{aligned}
& \left(\begin{array}{cccc}
(\mathrm{a} & \mathrm{b}) & \mathrm{c} & (\mathrm{a} \\
\mathrm{b}
\end{array}\right) \\
& \left(\begin{array}{ccc}
& \mathrm{x} & \mathrm{c}
\end{array}\right)
\end{aligned}
$$

\{ \}

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

\{ \}

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

$\{x:(a b)\}$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

$\{x:(a b)\}$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

$\{x:(a b)\}$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

$\left(\begin{array}{cccc}\left(\begin{array}{cc}a & b\end{array}\right. & c & \left(\begin{array}{ll}a & b\end{array}\right) \\ (& ? x & ? x & ? x\end{array}\right)$

$$
\{x:(a b)\}
$$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Lookup
(ab)
(a b)

$$
\left\{\begin{array}{c}
\mathrm{x}:(\mathrm{a} b) \\
\text { Success! }
\end{array}\right.
$$

C
(a b)

$$
\{x:(a b)\}
$$

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unification

Unification recursively unifies each pair of corresponding elements in two relations, accumulating an assignment.

1. Look up variables in the current environment.
2. Establish new bindings to unify elements.

Unifying Variables

Unifying Variables

Two relations that contain variables can be unified as well.

Unifying Variables

Two relations that contain variables can be unified as well.
$\left(\begin{array}{ll}\text { ? } & ? \mathrm{x}\end{array}\right)$
((a ? y c) (a b ? z))

Unifying Variables

Two relations that contain variables can be unified as well.

Unifying Variables

Two relations that contain variables can be unified as well.

Unifying Variables

Two relations that contain variables can be unified as well.

Unifying Variables

Two relations that contain variables can be unified as well.

Unifying Variables

Two relations that contain variables can be unified as well.

Lookup
(a ? y c)
(a b ? z)

Unifying Variables

Two relations that contain variables can be unified as well.

Lookup
$\left(\begin{array}{ll}\mathrm{a} & \mathrm{y} \\ \mathrm{C}\end{array}\right)$
(a b ? z)

Unifying Variables

Two relations that contain variables can be unified as well.

Lookup
$\left(\begin{array}{ll}a & c\end{array}\right)$
(ab ? z)

Unifying Variables

Two relations that contain variables can be unified as well.

Lookup
$\left(\begin{array}{ll}a & c\end{array}\right)$
(ab $\quad \mathrm{b}$)

Unifying Variables

Two relations that contain variables can be unified as well.

Lookup
(a) \quad ©
(ab ? b)

Unifying Variables

Two relations that contain variables can be unified as well.

Unifying Variables

Two relations that contain variables can be unified as well.

Unifying Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
This process is called grounding. Two unified expressions have the same grounded form.

Unifying Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
This process is called grounding. Two unified expressions have the same grounded form.

lookup('?x')

Unifying Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
This process is called grounding. Two unified expressions have the same grounded form.
lookup ('? $\left.{ }^{\prime}\right) ~ \triangleleft(\mathrm{a}$? y c)

Unifying Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
This process is called grounding. Two unified expressions have the same grounded form.
lookup('?x') $\triangleleft(\mathrm{a}$? y c) lookup('?y')

Unifying Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
This process is called grounding. Two unified expressions have the same grounded form.
lookup('?x') $\triangleleft(\mathrm{a}$?y c) lookup('?y') $\Rightarrow \mathrm{b}$

Unifying Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
This process is called grounding. Two unified expressions have the same grounded form.
lookup('?x') $\triangleleft\left(\mathrm{a}\right.$? y c) lookup('?y') $\triangleleft \mathrm{b}$ ground('? $\left.\mathrm{x}^{\prime}\right)$

Unifying Variables

Two relations that contain variables can be unified as well.

Substituting values for variables may require multiple steps.
This process is called grounding. Two unified expressions have the same grounded form.
lookup('?x') $\triangleleft(\mathrm{a} ? \mathrm{y} \mathrm{c}) \quad$ lookup('?y') $\triangleleft \mathrm{b} \quad$ ground('? $\left.\mathrm{x}^{\prime}\right) ~ \triangleleft(\mathrm{a} \mathrm{b}$ c)

Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
    if e == f:
        return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
    elif scheme_atomp(e) or scheme_atomp(f):
        return False
    else:
        return unify(e.first, f.first, env) and unify(e.second, f.second, env)
```


Implementing Unification

```
def unify(e, f, env):
    e= lookup(e, env)
    f = lookup(f, env)
    1. Look up variables
        in the current
    if e == f:
        return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
    elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
    if e == f:
        return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
    elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
, if e == f:
    return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
    - elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Implementing Unification

def unify(e, f, env):
e = lookup(e, env)
$f=$ lookup(f, env)
, if e == f:
return True
elif isvar(e):
env.define(e, f)
return True
elif isvar(f):
env.define(f, e)

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements. return True

- elif scheme_atomp(e) or scheme_atomp(f): return False
else:

Recursively unify the first and rest of any lists.
return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
, if e == f:
    return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
- elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.
$\left(\begin{array}{ll}(a b) & b \\ (a b)\end{array}\right)$
(\quad ? $\mathrm{x} \quad$? x)

Recursively unify the first and rest of any lists.

```
else:
return unify(e.first, f.first, env) and unify(e.second, f.second, env)
```


Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
, if e == f:
    return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
- elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.
($(\mathrm{a} b) \mathrm{c}(\mathrm{a} b)$)
(3 x C ? x)
env: \{ \}

Recursively unify the first and rest of any lists.

```
else:
return unify(e.first, f.first, env) and unify(e.second, f.second, env)
```


Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
- if e == f:
    return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
- elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.

env: \{
\}

```
    else:
```

Recursively unify the first and rest of any lists.

```
            return unify(e.first, f.first, env) and unify(e.second, f.second, env)
```


Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
- if e == f:
    return True
    elif isvar(e):
        env.define(e, f
        return True
    elif isvar(f):
        env.define(f, e)
        return True
- elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.

env: \{ \}

```
and rest of any lists.
else:
```


Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
- if e == f:
    return True
    elif isvar(e):
        env.define(e, f
        return True
    elif isvar(f):
        env.define(f, e)
        return True
- elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.

env: $\{x:(a b)\}$

Recursively unify the first and rest of any lists.

```
else:
return unify(e.first, f.first, env) and unify(e.second, f.second, env)
```


Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
- if e == f:
    return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
- elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.

env: $\{x:(a b)\}$

Recursively unify the first and rest of any lists.
else:
return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
; if e == f:
    return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
- elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.

env: $\{x:(a b)\}$
and rest of any lists.
else:

Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
- if e == f:
    return True
    elif isvar(e):
        env.define(e, f
        return True
    elif isvar(f):
        env.define(f, e)
        return True
    ` elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.
else:

env: $\{x:(a b)\}$
and rest of any lists.
Recursively unify the first
return unify(e.first, f.first, env) and unify(e.second, f. second, env)

Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
- if e == f:
    return True
    elif isvar(e):
        env.define(e, f
        return True
    elif isvar(f):
        env.define(f, e)
        return True
    ` elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.
else:

Recursively unify the first and rest of any lists.
return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Implementing Unification

```
def unify(e, f, env):
    e = lookup(e, env)
    f = lookup(f, env)
- if e == f:
    return True
    elif isvar(e):
        env.define(e, f)
        return True
    elif isvar(f):
        env.define(f, e)
        return True
    ` elif scheme_atomp(e) or scheme_atomp(f):
        return False
```

1. Look up variables in the current environment

Symbols/relations without variables only unify if they are the same
2. Establish new bindings to unify elements.
else:

Lookup
(a b)
(ab)
env: $\{x:(\mathrm{a} b)\}$

Recursively unify the first and rest of any lists.
return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Search

Searching for Proofs

Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.

Searching for Proofs

Le Logic interpreter searches	(fact (app () ?x ? ${ }^{\text {(}}$
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	(app ?r ?y ?z))
rove the query to be true.	(query (app ?left (c d) (e b c d)))

Searching for Proofs

e Logic interpreter searches	act (app () ?x ?x))
he space of facts to find	(fact (app (?a . ?r) ?y (?a . ?z))
unifying facts and an env that	(app ? ? ? ${ }^{\text {a }}$ (${ }^{\text {a }}$ ())
rove the query to be true.	(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

Searching for Proofs

```
The Logic interpreter searches (fact (app () ?x ?x))
the space of facts to find
unifying facts and an env that
prove the query to be true.
```



```
(app ?left (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
```


Searching for Proofs

e Logic interpreter searches	(fact (app () ?x ? ${ }^{\text {(}}$)
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	(app ?r ?y ?z))
prove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left: (?a . ?r)}
(app (?a . ?r) ?y (?a . ?z))
```


Searching for Proofs

Le Logic interpreter searches	(fact (app () ?x ? ${ }^{\text {() }}$
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	
rove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left: (?a. ?r)} >(app (e.er) (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
```


Searching for Proofs

e Logic interpreter searches	(fact (app () ?x ? ${ }^{\text {(}}$)
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	(app ?r ?y ?z))
prove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left: (?a. ?r)} >(app (e.er) (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
```


Searching for Proofs

Le Logic interpreter searches	(fact (app () ?x ? ${ }^{\text {() }}$
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	
rove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left: (?a. ?r)} >(app (e.er) (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
```


Searching for Proofs

```
The Logic interpreter searches (fact (app () ?x ?x))
the space of facts to find (fact (app (?a . ?r) ?y (?a . ?z))
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left: (?a. ?r)} > (app (e. ?r) (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
Variables are local
```


Searching for Proofs

e Logic interpreter searches	act (app () ?x ?x))
he space of facts to find	(fact (app (?a . ?r) ?y (?a . ?z))
unifying facts and an env that	(app ? ? ? ${ }^{\text {a }}$ (${ }^{\text {a }}$ ())
rove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left: (?a.er)} > (app (e.er) (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
Variables are local
```


Searching for Proofs

e Logic interpreter searches	act (app () ?x ?x))
he space of facts to find	(fact (app (?a . ?r) ?y (?a . ?z))
unifying facts and an env that	(app ? ? ? ${ }^{\text {a }}$ (${ }^{\text {a }}$ ())
rove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left: (?a. ?r)} >(app (e.er) (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)} >(app (b . ?r2) (c d) (b c d))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))}{\begin{array}{l}{\mathrm{ Variables are local }}\\{\mathrm{ to facts & queries }}
```


Searching for Proofs

e Logic interpreter searches	act (app () ?x ?x))
he space of facts to find	(fact (app (?a . ?r) ?y (?a . ?z))
unifying facts and an env that	(app ? ? ? ${ }^{\text {a }}$ (${ }^{\text {a }}$ ())
rove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a:e, y: (c d), z: (b c d), left: (?a.er)} > (app (e.er) (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)} >(app (b . ?r2) (c d) (b c d))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
(app ?r2 (c d) (c d))
Variables are local
```


Searching for Proofs


```
(app ?left (c d) (e b c d))
    {a:e, y: (c d), z: (b c d), left: (?a.er)} > (app (e.er) (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)} >(app (b . ?r2) (c d) (b c d))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
(app ?r2 (c d) (c d))
```

(app () ?x ?x)

Searching for Proofs


```
(app ?left (c d) (e b c d))
    {a:e, y: (c d), z: (b c d), left: (?a.er)} > (app (e.er) (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)} >(app (b . ?r2) (c d) (b c d))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
(app ?r2 (c d) (c d))
    {r2: (), x: (c d)}
(app () ?x ?x)
```


Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.	
	(fact (app (?a . ?r)
	(app
	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a:e, y: (c d), z: (b c d), left: (?a.er)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)} >(app (b . ?r2) (c d) (b c d))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
to facts & queries
(app ?r2 (c d) (c d))
    {r2: (), x: (c d)}
    (app () (c d) (c d))
(app () ?x ?x)
```


Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.	
	(fact (app (?a . ?r)
	(app
	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a:e, y: (c d), z: (b c d), left: (?a.er)} >(app (e.er) (c d) (e b c d))
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)} >(app (b . ?r2) (c d) (b c d))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis
to facts & queries
(app ?r2 (c d) (c d))
?left:
```


Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.	
	(fact (app (?a . ?r)
	(app
	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a:e, y: (c d), z: (b c d), left:(?a-ar)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)} >(app (b . ?r2) (c d) (b c d))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis
to facts & queries
(app ?r2 (c d) (c d))
?left:
```


Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.	
	(fact (app (?a . ?r)
	(app
	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left:(?a-ar)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)} >(app (b . ?r2) (c d) (b c d))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis
to facts & queries
(app ?r2 (c d) (c d))
?left:
```


Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.	
	(fact (app (?a . ?r)
	(app
	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left:(?a-ar)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)} >(app (b . ?r2) (c d) (b c d))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
to facts & queries
?left: (e .
(app ?r2 (c d) (c d))
```


Searching for Proofs

The Logic interpreter searches the space of facts to find unifying facts and an env that prove the query to be true.	
	(fact (app (?a . ?r)
	(app
	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left:(?a-ar)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)} >(app (b . ?r2) (c d) (b c d))
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
to facts & queries
    ?left: (e .
(app ?r2 (c d) (c d))
    {r2: (), x: (c d)}}>(\operatorname{app}()(cd) (c d)
    ?r:
(app () ?x ?x)
```


Searching for Proofs

e Logic interpreter searches	(fact (app () ?x
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	
prove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left:(?a-ar)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d),r:(?a2,ar2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
to facts & queries
    ?left: (e .
(app ?r2 (c d) (c d))
    {r2: (), x: (c d)}}>(\operatorname{app}()(cd) (c d)
    ?r:
(app () ?x ?x)
```


Searching for Proofs

e Logic interpreter searches	(fact (app () ?x
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	
prove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left:(?a-ar)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d), r: (?a2, ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
to facts & queries
    ?left: (e .
(app ?r2 (c d) (c d))
    {r2: (), x: (c d)}}>(\operatorname{app}()(cd) (c d)
    ?r:
(app () ?x ?x)
```


Searching for Proofs

e Logic interpreter searches	(fact (app () ?x
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	
prove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left:(?a-ar)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d),r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
to facts & queries
    ?left: (e .
(app ?r2 (c d) (c d))
    {r2: (), x: (c d)}}>(\operatorname{app}()(cd) (c d)
    ?r: (b .
(app () ?x ?x)
```


Searching for Proofs

e Logic interpreter searches	(fact (app () ?x
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	
prove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left:(?a-ar)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d),r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
to facts & queries
    ?left: (e .
(app ?r2 (c d) (c d))
    {r2:(), x: (c d)}}\>(\operatorname{app}()(cd) (c d)
(app () ?x ?x)
```


Searching for Proofs

e Logic interpreter searches	(fact (app () ?x
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	
prove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left:(?a,?r)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d),r:(?a2, ?r2)}
    {a2: b, y2: (c d), z2: (c d),r:(?a2, ?r2)}
    {a2: b, y2: (c d), z2: (c d), r:(?a2, ?r2)}
    {a2: b, y2: (c d), z2: (c d), r: (?a2, ?r2)}
    ?left: (e .
(app ?r2 (c d) (c d))
    {r2: (), x: (c d)}
(app () ?x ?x)
```


Searching for Proofs

e Logic interpreter searches	(fact (app () ?x
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	
prove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y: (c d), z: (b c d), left:(?a-ar)}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d),r: (?a2 . ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
                    Variables are local
    ?left: (e .
(app ?r2 (c d) (c d))
    {r2:(), x: (c d)}}\>(\operatorname{app}()(cd) (c d)
(app () ?x ?x)
                                    ?r:(b, ()) }
                                    (b)
```


Searching for Proofs

e Logic interpreter searches	(fact (app () ?x
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	
prove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y:(c d), z:(b c d), left: (?a, ?r)}}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d),r: (?a2 . ?r2)}
    {a2: b, y2: (c d), z2: (c d),r:(?a2, ?r2)}
    {a2: b, y2: (c d), z2: (c d), r:(?a2, ?r2)}
    {a2: b, y2: (c d), z2: (c d), r: (?a2, ?r2)}
(app ?r2 (c d) (c d))
    {r2: ()}, x: (c d)}
(app () ?x ?x)
```


Searching for Proofs

e Logic interpreter searches	(fact (app () ?x
he space of facts to find	(fact (app (?a . ?r) ?y
unifying facts and an env that	
prove the query to be true.	(query (app ?left (c d) (e b c d)))

```
(app ?left (c d) (e b c d))
    {a: e, y:(c d), z: (b c d), left:(?a-?r)}}
(app (?a . ?r) ?y (?a . ?z))
    conclusion <- hypothesis
(app ?r (c d) (b c d)))
    {a2: b, y2: (c d), z2: (c d),r: (?a2, ?r2)}
(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
    conclusion <- hypothesis Variables are local
                                    Variables are local
    ?left: (e. (b)) }\checkmark\mathrm{ (e b)
(app ?r2 (c d) (c d))
    {r2: (), x: (c d)}
(app () ?x ?x)
```


Depth-First Search

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:
env_head = an environment extending env

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:
env_head = an environment extending env
if unify(conclusion of fact, first clause, env_head):

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:
env_head = an environment extending env
if unify(conclusion of fact, first clause, env_head):

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:
env_head = an environment extending env
if unify(conclusion of fact, first clause, env_head):
for env_rule in search(hypotheses of fact, env_head):

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:
env_head = an environment extending env

Environment now contains new unifying bindings
if unify(conclusion of fact, first clause, env_head):
for env_rule in search(hypotheses of fact, env_head):
for result in search(rest of clauses, env_rule):

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:
env_head = an environment extending env

```
Environment now contains
``` new unifying bindings
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:
env_head = an environment extending env

\section*{Environment now contains new unifying bindings}
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result
- Limiting depth of the search avoids infinite loops.

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:
env_head = an environment extending env

\section*{Environment now contains new unifying bindings}
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result
- Limiting depth of the search avoids infinite loops.
- Each time a fact is used, its variables are renamed.

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:
env_head = an environment extending env

\section*{Environment now contains new unifying bindings}
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result
- Limiting depth of the search avoids infinite loops.
- Each time a fact is used, its variables are renamed.
- Bindings are stored in separate frames to allow backtracking.

\section*{Depth-First Search}

The space of facts is searched exhaustively, starting from the query and following a depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.
def search(clauses, env):
for fact in facts:
env_head = an environment extending env

\section*{Environment now contains new unifying bindings}
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result
- Limiting depth of the search avoids infinite loops.
- Each time a fact is used, its variables are renamed.
- Bindings are stored in separate frames to allow backtracking.
(Demo)

\author{
Addition
}```

