
61A Lecture 32

Friday, November 22

Announcements

2

Announcements

• Homework 10 due Tuesday 11/26 @ 11:59pm

2

Announcements

• Homework 10 due Tuesday 11/26 @ 11:59pm

• No lecture on Wednesday 11/27 or Friday 11/29

2

Announcements

• Homework 10 due Tuesday 11/26 @ 11:59pm

• No lecture on Wednesday 11/27 or Friday 11/29

• No discussion section Wednesday 11/27 through Friday 11/29

2

Announcements

• Homework 10 due Tuesday 11/26 @ 11:59pm

• No lecture on Wednesday 11/27 or Friday 11/29

• No discussion section Wednesday 11/27 through Friday 11/29

!Lab will be held on Wednesday 11/27

2

Announcements

• Homework 10 due Tuesday 11/26 @ 11:59pm

• No lecture on Wednesday 11/27 or Friday 11/29

• No discussion section Wednesday 11/27 through Friday 11/29

!Lab will be held on Wednesday 11/27

• Recursive art contest entries due Monday 12/2 @ 11:59pm

2

Appending Lists

(Demo)

Lists in Logic

4

Lists in Logic

Expressions begin with query or fact followed by relations.

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x)) Simple fact: Conclusion

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

Simple fact: Conclusion

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

Conclusion

Simple fact: Conclusion

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

Conclusion

Hypothesis

Simple fact: Conclusion

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

Conclusion

Hypothesis

Simple fact: Conclusion

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

Conclusion

Hypothesis

Simple fact: Conclusion

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

Conclusion

Hypothesis

Simple fact: Conclusion

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)
?x

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)
?x ?x

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

?x ?x

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

?x ?x

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?a

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?r?a

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?r
(?a . ?r)
?a

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?y?r
(?a . ?r)
?a

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?y?r
(?a . ?r)
?a ?a

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?y?r
(?a . ?r)
?a ?z?a

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?y?r
(?a . ?r)
?a ?z?a

(?a . ?z)

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?y?r
(?a . ?r)
?a ?z?a

(?a . ?z)

?r

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?y?r
(?a . ?r)
?a ?z?a

(?a . ?z)

?y?r

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?y?r
(?a . ?r)
?a ?z?a

(?a . ?z)

?y?r ?z

Lists in Logic

Expressions begin with query or fact followed by relations.

Expressions and their relations are Scheme lists.

(fact (append-to-form () ?x ?x))

(fact (append-to-form (?a . ?r) ?y (?a . ?z))
 (append-to-form ?r ?y ?z))

(query (append-to-form ?left (c d) (e b c d)))
Success!
left: (e b)

In a fact, the first relation is the conclusion and the rest are hypotheses.

In a query, all relations must be satisfied.

The interpreter lists all bindings of variables to values that it can find to
satisfy the query.

Conclusion

Hypothesis

Simple fact: Conclusion

4

What ?left can append with
(c d) to create (e b c d)

() (c d) => (c d)

(b) (c d) => (b c d)

(e b) (c d) => (e b c d)

(e . (b)) (c d) => (e . (b c d))

?x ?x

?y?r
(?a . ?r)
?a ?z?a

(?a . ?z)

?y?r ?z

(Demo)

Permuting Lists

Anagrams in Logic

6

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

6

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

6

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

6

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

6

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

Element

6

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

Element List

6

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

Element List List with ?a in front

6

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

Element List List with ?a in front

6

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

Element List List with ?a in front

6

List with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

Element List List with ?a in front

6

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

Element List List with ?a in front

6

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)

Element List List with ?a in front

6

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)

Element List List with ?a in front

6

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

a r t

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

a r t

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

a r t

 r t

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

a r t

 r t
 ar t

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

a r t

 r t
 ar t
 rat

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

a r t

 r t
 ar t
 rat
 r ta

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

a r t

 r t

 t r

 ar t
 rat
 r ta

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

a r t

 r t

 t r

 ar t
 rat
 r ta

 at r
List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

a r t

 r t

 t r

 ar t
 rat
 r ta

 at r
 tar

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

a r t

 r t

 t r

 ar t
 rat
 r ta

 at r
 tar
 t ra

List with ?a somewhere

Bigger list with ?a somewhere

Anagrams in Logic

A permutation (i.e., anagram) of a list is:

• The empty list for an empty list.

• The first element of the list inserted into an anagram
of the rest of the list.

(fact (insert ?a ?r (?a . ?r)))

(fact (insert ?a (?b . ?r) (?b . ?s))
 (insert ?a ?r ?s))

(fact (anagram () ()))

(fact (anagram (?a . ?r) ?b)
 (insert ?a ?s ?b)
 (anagram ?r ?s))

Element List List with ?a in front

6

(Demo)

a r t

 r t

 t r

 ar t
 rat
 r ta

 at r
 tar
 t ra

List with ?a somewhere

Bigger list with ?a somewhere

Unification

Pattern Matching

8

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

8

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

8

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

((a b) c (a b))

8

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

((a b) c (a b))

(?x c ?x)

8

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

((a b) c (a b))

(?x c ?x)
True, {x: (a b)}

8

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

((a b) c (a b))

(?x c ?x)
True, {x: (a b)}

((a b) c (a b))

8

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

((a b) c (a b))

(?x c ?x)
True, {x: (a b)}

((a b) c (a b))

((a ?y) ?z (a b))

8

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

((a b) c (a b))

(?x c ?x)
True, {x: (a b)}

((a b) c (a b))

((a ?y) ?z (a b))
True, {y: b, z: c}

8

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

((a b) c (a b))

(?x c ?x)
True, {x: (a b)}

((a b) c (a b))

((a ?y) ?z (a b))
True, {y: b, z: c}

((a b) c (a b))

(?x ?x ?x)

8

Pattern Matching

The basic operation of the Logic interpreter is to attempt to unify two relations.

Unification is finding an assignment to variables that makes two relations the same.

((a b) c (a b))

(?x c ?x)
True, {x: (a b)}

((a b) c (a b))

((a ?y) ?z (a b))
True, {y: b, z: c}

((a b) c (a b))

(?x ?x ?x)
False

8

Unification

9

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

9

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

9

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

{ }

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

{ }

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

Success!

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

((a b) c (a b))

(?x ?x ?x)

{ }

 (a b)
 (a b)

Lookup

Success!

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

((a b) c (a b))

(?x ?x ?x)

{ }

 (a b)
 (a b)

Lookup

Success!

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

((a b) c (a b))

(?x ?x ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

Success!

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

((a b) c (a b))

(?x ?x ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

Success!

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

((a b) c (a b))

(?x ?x ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

 c
 (a b)

Lookup

Success!

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

((a b) c (a b))

(?x ?x ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

 c
 (a b)

Lookup

Success!

Symbols/relations
without variables
only unify if they

are the same

Unification

Unification recursively unifies each pair of corresponding elements in two relations,
accumulating an assignment.

1.Look up variables in the current environment.

2.Establish new bindings to unify elements.

9

((a b) c (a b))

(?x c ?x)

x: (a b){ }

((a b) c (a b))

(?x ?x ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

 c
 (a b)

Lookup

Success! Failure.

Symbols/relations
without variables
only unify if they

are the same

Unifying Variables

10

Unifying Variables

Two relations that contain variables can be unified as well.

10

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

(a ?y c)

(a b ?z)

Lookup

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

(a ?y c)

(a b ?z)

Lookup

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

(a ?y c)

(a b ?z)

Lookup

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,

(a ?y c)

(a b ?z)

Lookup

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,

(a ?y c)

(a b ?z)

Lookup

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Substituting values for variables may require multiple steps.

This process is called grounding. Two unified expressions have the same grounded form.

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Substituting values for variables may require multiple steps.

This process is called grounding. Two unified expressions have the same grounded form.

lookup('?x')

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Substituting values for variables may require multiple steps.

This process is called grounding. Two unified expressions have the same grounded form.

lookup('?x') (a ?y c)

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Substituting values for variables may require multiple steps.

This process is called grounding. Two unified expressions have the same grounded form.

lookup('?x') (a ?y c) lookup('?y')

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Substituting values for variables may require multiple steps.

This process is called grounding. Two unified expressions have the same grounded form.

lookup('?x') (a ?y c) lookup('?y') b

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Substituting values for variables may require multiple steps.

This process is called grounding. Two unified expressions have the same grounded form.

lookup('?x') (a ?y c) lookup('?y') b ground('?x')

Unifying Variables

Two relations that contain variables can be unified as well.

10

(?x ?x)

((a ?y c) (a b ?z))
True, {x: (a ?y c),

y: b,
z: c}

(a ?y c)

(a b ?z)

Lookup

Substituting values for variables may require multiple steps.

This process is called grounding. Two unified expressions have the same grounded form.

lookup('?x') (a ?y c) lookup('?y') b ground('?x') (a b c)

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

1. Look up variables
in the current
environment

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

1. Look up variables
in the current
environment

2. Establish new
bindings to unify

elements.

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

2. Establish new
bindings to unify

elements.

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

{ }env:

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

{ }env:

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

{ }env:

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

x: (a b){ }env:

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

x: (a b){ }env:

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

x: (a b){ }env:

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

x: (a b){ }env:

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

env:

Implementing Unification

11

def unify(e, f, env):
 e = lookup(e, env)
 f = lookup(f, env)
 if e == f:
 return True
 elif isvar(e):
 env.define(e, f)
 return True
 elif isvar(f):
 env.define(f, e)
 return True
 elif scheme_atomp(e) or scheme_atomp(f):
 return False
 else:
 return unify(e.first, f.first, env) and unify(e.second, f.second, env)

Symbols/relations
without variables
only unify if they

are the same

1. Look up variables
in the current
environment

Recursively unify the first
and rest of any lists.

2. Establish new
bindings to unify

elements.

((a b) c (a b))

(?x c ?x)

x: (a b){ }

 (a b)
 (a b)

Lookup

env:

Search

Searching for Proofs

13

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)} (app (e . ?r) (c d) (e b c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (e . ?r) (c d) (e b c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

(app (e . ?r) (c d) (e b c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))
Variables are local
to facts & queries

(app (e . ?r) (c d) (e b c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

Variables are local
to facts & queries

(app (e . ?r) (c d) (e b c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

Variables are local
to facts & queries

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

Variables are local
to facts & queries

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

Variables are local
to facts & queries

(app () ?x ?x)

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

Variables are local
to facts & queries

(app () ?x ?x)

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

Variables are local
to facts & queries

(app () ?x ?x)

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))
?r:

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))
?r:

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))
?r:

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))
?r: (b .

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))
?r: (b .

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))
?r: (b . ())

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left:
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))
?r: (b)(b . ())

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left: (b))
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))
?r: (b)(b . ())

Searching for Proofs

13

The Logic interpreter searches
the space of facts to find
unifying facts and an env that
prove the query to be true.

(fact (app () ?x ?x))

(fact (app (?a . ?r) ?y (?a . ?z))
 (app ?r ?y ?z))

(query (app ?left (c d) (e b c d)))

(app ?left (c d) (e b c d))

(app (?a . ?r) ?y (?a . ?z))

{a: e, y: (c d), z: (b c d), left: (?a . ?r)}

(app ?r (c d) (b c d)))

conclusion <- hypothesis

(app (?a2 . ?r2) ?y2 (?a2 . ?z2))

{a2: b, y2: (c d), z2: (c d), r: (?a2 . ?r2)}

conclusion <- hypothesis

(app ?r2 (c d) (c d))

{r2: (), x: (c d)}

?left: (e b)(b))
Variables are local
to facts & queries

(app () ?x ?x)

(e .

(app (e . ?r) (c d) (e b c d))

(app (b . ?r2) (c d) (b c d))

(app () (c d) (c d))
?r: (b)(b . ())

Depth-First Search

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env
 if unify(conclusion of fact, first clause, env_head):

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env
 if unify(conclusion of fact, first clause, env_head):

Environment now contains
new unifying bindings

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):

Environment now contains
new unifying bindings

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):

Environment now contains
new unifying bindings

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result

Environment now contains
new unifying bindings

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result

• Limiting depth of the search avoids infinite loops.

Environment now contains
new unifying bindings

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result

• Limiting depth of the search avoids infinite loops.
• Each time a fact is used, its variables are renamed.

Environment now contains
new unifying bindings

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result

• Limiting depth of the search avoids infinite loops.
• Each time a fact is used, its variables are renamed.
• Bindings are stored in separate frames to allow backtracking.

Environment now contains
new unifying bindings

14

Depth-First Search

The space of facts is searched exhaustively, starting from the query and following a
depth-first exploration order.

Depth-first search: Each proof approach is explored exhaustively before the next.

def search(clauses, env):
 for fact in facts:
 env_head = an environment extending env
 if unify(conclusion of fact, first clause, env_head):
 for env_rule in search(hypotheses of fact, env_head):
 for result in search(rest of clauses, env_rule):
 yield each successful result

• Limiting depth of the search avoids infinite loops.
• Each time a fact is used, its variables are renamed.
• Bindings are stored in separate frames to allow backtracking.

Environment now contains
new unifying bindings

14

(Demo)

Addition

(Demo)

