
61A Lecture 31

Wednesday, November 20

Announcements

2

Announcements

• Project 4 due Thursday 11/21 @ 11:59pm.

2

Announcements

• Project 4 due Thursday 11/21 @ 11:59pm.

• Extra reader office hours in 405 Soda this week.

2

Announcements

• Project 4 due Thursday 11/21 @ 11:59pm.

• Extra reader office hours in 405 Soda this week.

!Wednesday: 5:30pm-7pm

!Thursday: 5:30pm-7pm

2

Announcements

• Project 4 due Thursday 11/21 @ 11:59pm.

• Extra reader office hours in 405 Soda this week.

!Wednesday: 5:30pm-7pm

!Thursday: 5:30pm-7pm

• Homework 10 due Tuesday 11/26 @ 11:59pm.

2

Announcements

• Project 4 due Thursday 11/21 @ 11:59pm.

• Extra reader office hours in 405 Soda this week.

!Wednesday: 5:30pm-7pm

!Thursday: 5:30pm-7pm

• Homework 10 due Tuesday 11/26 @ 11:59pm.

• Recursive art contest entries will be due Monday 12/2 @ 11:59pm (After Thanksgiving).

2

Declarative Languages

Databases

http://www.headfirstlabs.com/sql_hands_on/ 4

Databases

A table is a collection of records, which are tuples of values organized in columns.

http://www.headfirstlabs.com/sql_hands_on/ 4

Databases

A table is a collection of records, which are tuples of values organized in columns.

Databases store tables and have have methods for adding, editing, and retrieving records.

http://www.headfirstlabs.com/sql_hands_on/ 4

Databases

A table is a collection of records, which are tuples of values organized in columns.

Databases store tables and have have methods for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely used programming language.

http://www.headfirstlabs.com/sql_hands_on/ 4

Databases

A table is a collection of records, which are tuples of values organized in columns.

Databases store tables and have have methods for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely used programming language.

SELECT * FROM toy_info WHERE color='yellow';

http://www.headfirstlabs.com/sql_hands_on/ 4

Databases

A table is a collection of records, which are tuples of values organized in columns.

Databases store tables and have have methods for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely used programming language.

SELECT * FROM toy_info WHERE color='yellow';

Databases

A database is a collection of records (tuples) and an
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

The language interpreter is free to compute the result in any
way it deems appropriate.

http://www.headfirstlabs.com/sql_hands_on/
http://www.headfirstlabs.com/sql_hands_on/ 4

Databases

A table is a collection of records, which are tuples of values organized in columns.

Databases store tables and have have methods for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely used programming language.

SELECT * FROM toy_info WHERE color='yellow';

Databases

A database is a collection of records (tuples) and an
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

The language interpreter is free to compute the result in any
way it deems appropriate.

http://www.headfirstlabs.com/sql_hands_on/
http://www.headfirstlabs.com/sql_hands_on/ 4

Each row is a record

Databases

A table is a collection of records, which are tuples of values organized in columns.

Databases store tables and have have methods for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely used programming language.

SELECT * FROM toy_info WHERE color='yellow';

Databases

A database is a collection of records (tuples) and an
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

The language interpreter is free to compute the result in any
way it deems appropriate.

http://www.headfirstlabs.com/sql_hands_on/

SQL is an example of a declarative programming language.

http://www.headfirstlabs.com/sql_hands_on/ 4

Each row is a record

Databases

A table is a collection of records, which are tuples of values organized in columns.

Databases store tables and have have methods for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely used programming language.

SELECT * FROM toy_info WHERE color='yellow';

Databases

A database is a collection of records (tuples) and an
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

The language interpreter is free to compute the result in any
way it deems appropriate.

http://www.headfirstlabs.com/sql_hands_on/

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

http://www.headfirstlabs.com/sql_hands_on/ 4

Each row is a record

Databases

A table is a collection of records, which are tuples of values organized in columns.

Databases store tables and have have methods for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely used programming language.

SELECT * FROM toy_info WHERE color='yellow';

Databases

A database is a collection of records (tuples) and an
interface for adding, editing, and retrieving records.

The Structured Query Language (SQL) is perhaps the most widely
used programming language on Earth.

SELECT * FROM toy_info WHERE color='yellow';

2

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

The language interpreter is free to compute the result in any
way it deems appropriate.

http://www.headfirstlabs.com/sql_hands_on/

SQL is an example of a declarative programming language.

It separates what to compute from how it is computed.

The language interpreter is free to compute the result in any way it wants.

http://www.headfirstlabs.com/sql_hands_on/ 4

Each row is a record

Declarative Programming

5

Declarative Programming

Characteristics of declarative languages:

5

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

5

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

5

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

5

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

• A "program" is a description of computational processes.

5

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

• A "program" is a description of computational processes.

• The interpreter carries out execution and evaluation rules.

5

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

• A "program" is a description of computational processes.

• The interpreter carries out execution and evaluation rules.

Building a universal problem solver is hard.

5

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

• A "program" is a description of computational processes.

• The interpreter carries out execution and evaluation rules.

Building a universal problem solver is hard.

Declarative languages often handle only some subset of problems.

5

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

• A "program" is a description of computational processes.

• The interpreter carries out execution and evaluation rules.

Building a universal problem solver is hard.

Declarative languages often handle only some subset of problems.

5

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

• A "program" is a description of computational processes.

• The interpreter carries out execution and evaluation rules.

Building a universal problem solver is hard.

Declarative languages often handle only some subset of problems.

5

Solve cool problems

as long as they are small

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

• A "program" is a description of computational processes.

• The interpreter carries out execution and evaluation rules.

Building a universal problem solver is hard.

Declarative languages often handle only some subset of problems.

5

Solve cool problems

as long as they are small

Limited problem solving

on large-scale datasets

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

• A "program" is a description of computational processes.

• The interpreter carries out execution and evaluation rules.

Building a universal problem solver is hard.

Declarative languages often handle only some subset of problems.

5

Solve cool problems

as long as they are small

Limited problem solving

on large-scale datasets

61A
logic.py

Declarative Programming

Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

• A "program" is a description of computational processes.

• The interpreter carries out execution and evaluation rules.

Building a universal problem solver is hard.

Declarative languages often handle only some subset of problems.

5

Solve cool problems

as long as they are small

Limited problem solving

on large-scale datasets

61A
logic.py

Most
applications

The Logic Language

The Logic Language

http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi 7

The Logic Language

The Logic language is invented for this course.

http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi 7

The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project with ideas from Prolog (1972).

http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi 7

The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project with ideas from Prolog (1972).

• Expressions are facts or queries, which contain relations.

http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi 7

The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project with ideas from Prolog (1972).

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi 7

The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project with ideas from Prolog (1972).

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

• For example, (likes john dogs) is a relation.

http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi 7

The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project with ideas from Prolog (1972).

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

• For example, (likes john dogs) is a relation.

• Implementation fits on a single sheet of paper (next lecture).

http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi 7

The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project with ideas from Prolog (1972).

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

• For example, (likes john dogs) is a relation.

• Implementation fits on a single sheet of paper (next lecture).

http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi 7

Today's theme:

The Logic Language

The Logic language is invented for this course.

• Based on the Scheme project with ideas from Prolog (1972).

• Expressions are facts or queries, which contain relations.

• Expressions and relations are Scheme lists.

• For example, (likes john dogs) is a relation.

• Implementation fits on a single sheet of paper (next lecture).

http://awhimsicalbohemian.typepad.com/.a/6a00e5538b84f3883301538dfa8f19970b-800wi 7

Today's theme:

Simple Facts

8

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

8

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

8

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

Language Syntax:

8

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

Language Syntax:

• A relation is a Scheme list.

8

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

Language Syntax:

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

8

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

Language Syntax:

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

logic> (fact (parent delano herbert))

8

Delano

Herbert

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

Language Syntax:

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

8

Delano

Herbert

Abraham

Barack

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

Language Syntax:

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

8

Delano

HerbertClinton

Abraham

Barack

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

Language Syntax:

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

logic> (fact (parent fillmore abraham))

8

Delano

HerbertClinton

Abraham

Barack

Fillmore

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

Language Syntax:

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

logic> (fact (parent fillmore abraham))

logic> (fact (parent fillmore delano))

8

Delano

HerbertClinton

Abraham

Barack

Fillmore

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

Language Syntax:

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

logic> (fact (parent fillmore abraham))

logic> (fact (parent fillmore delano))

logic> (fact (parent fillmore grover))

8

Delano

HerbertClinton

Abraham

Barack

Fillmore

Grover

Simple Facts

A simple fact expression in the Logic language declares a relation to be true.

Let's say I want to track the heredity of a pack of dogs.

Language Syntax:

• A relation is a Scheme list.

• A fact expression is a Scheme list of relations.

logic> (fact (parent delano herbert))

logic> (fact (parent abraham barack))

logic> (fact (parent abraham clinton))

logic> (fact (parent fillmore abraham))

logic> (fact (parent fillmore delano))

logic> (fact (parent fillmore grover))

logic> (fact (parent eisenhower fillmore))

8

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Relations are Not Procedure Calls

9

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

9

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

9

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

9

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

9

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

We can ask the Logic interpreter to complete relations based on known facts.

9

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

We can ask the Logic interpreter to complete relations based on known facts.

9

(add ? 2 3)

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

We can ask the Logic interpreter to complete relations based on known facts.

9

(add ? 2 3) 1

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

We can ask the Logic interpreter to complete relations based on known facts.

9

(add ? 2 3)

(add 1 ? 3)

1

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

We can ask the Logic interpreter to complete relations based on known facts.

9

(add ? 2 3)

(add 1 ? 3)

1

2

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

We can ask the Logic interpreter to complete relations based on known facts.

9

(add ? 2 3)

(add 1 ? 3)

(add 1 2 ?)

1

2

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

We can ask the Logic interpreter to complete relations based on known facts.

9

(add ? 2 3)

(add 1 ? 3)

(add 1 2 ?)

1

2

3

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

We can ask the Logic interpreter to complete relations based on known facts.

9

(add ? 2 3)

(add 1 ? 3)

(add 1 2 ?)

(? 1 2 3)

1

2

3

Relations are Not Procedure Calls

In Logic, a relation is not a call expression.

• Scheme: the expression (abs -3) calls abs on -3. It returns 3.

• Logic: (abs -3 3) asserts that abs of -3 is 3.

To assert that 1 + 2 = 3, we use a relation: (add 1 2 3)

We can ask the Logic interpreter to complete relations based on known facts.

9

(add ? 2 3)

(add 1 ? 3)

(add 1 2 ?)

(? 1 2 3)

1

2

3

add

Queries

Queries

11

Queries

A query contains one or more relations that may contain variables.

11

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?

11

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

11

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

11

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent abraham ?puppy))

11

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent abraham ?puppy))

11

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover
A variable can
have any name

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent abraham ?puppy))

11

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover
A variable can
have any name

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent abraham ?puppy))
Success!

11

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover
A variable can
have any name

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent abraham ?puppy))
Success!
puppy: barack

11

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover
A variable can
have any name

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent abraham ?puppy))
Success!
puppy: barack
puppy: clinton

11

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover
A variable can
have any name

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent abraham ?puppy))
Success!
puppy: barack
puppy: clinton

11

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover
A variable can
have any name

Each line is an assignment
of variables to values

Queries

A query contains one or more relations that may contain variables.

Variables are symbols starting with ?
logic> (fact (parent delano herbert))
logic> (fact (parent abraham barack))
logic> (fact (parent abraham clinton))
logic> (fact (parent fillmore abraham))
logic> (fact (parent fillmore delano))
logic> (fact (parent fillmore grover))
logic> (fact (parent eisenhower fillmore))

logic> (query (parent abraham ?puppy))
Success!
puppy: barack
puppy: clinton

11

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover
A variable can
have any name

Each line is an assignment
of variables to values

(Demo)

Compound Facts and Queries

Compound Facts

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

logic> (query (child eisenhower clinton))

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

logic> (query (child eisenhower clinton))
Failure.

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

logic> (query (child eisenhower clinton))
Failure.

logic> (query (child ?kid fillmore))

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

logic> (query (child eisenhower clinton))
Failure.

logic> (query (child ?kid fillmore))
Success!

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

logic> (query (child eisenhower clinton))
Failure.

logic> (query (child ?kid fillmore))
Success!
kid: abraham

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

logic> (query (child eisenhower clinton))
Failure.

logic> (query (child ?kid fillmore))
Success!
kid: abraham
kid: delano

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Facts

A fact can include multiple relations and variables as well.

(fact <conclusion> <hypothesis0> <hypothesis1> ... <hypothesisN>)

Means <conclusion> is true if all the <hypothesisK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (child herbert delano))
Success!

logic> (query (child eisenhower clinton))
Failure.

logic> (query (child ?kid fillmore))
Success!
kid: abraham
kid: delano
kid: grover

13

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)
 (child clinton ?kid))

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)
 (child clinton ?kid))
Success!

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)
 (child clinton ?kid))
Success!
grampa: fillmore kid: abraham

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)
 (child clinton ?kid))
Success!
grampa: fillmore kid: abraham

logic> (query (child ?y ?x)

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)
 (child clinton ?kid))
Success!
grampa: fillmore kid: abraham

logic> (query (child ?y ?x)
 (child ?x eisenhower))

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)
 (child clinton ?kid))
Success!
grampa: fillmore kid: abraham

logic> (query (child ?y ?x)
 (child ?x eisenhower))
Success!

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)
 (child clinton ?kid))
Success!
grampa: fillmore kid: abraham

logic> (query (child ?y ?x)
 (child ?x eisenhower))
Success!
y: abraham x: fillmore

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)
 (child clinton ?kid))
Success!
grampa: fillmore kid: abraham

logic> (query (child ?y ?x)
 (child ?x eisenhower))
Success!
y: abraham x: fillmore
y: delano x: fillmore

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Compound Queries

An assignment must satisfy all relations in a query.

(query <relation0> <relation1> ... <relationN>)

is satisfied if all the <relationK> are true.

logic> (fact (child ?c ?p) (parent ?p ?c))

logic> (query (parent ?grampa ?kid)
 (child clinton ?kid))
Success!
grampa: fillmore kid: abraham

logic> (query (child ?y ?x)
 (child ?x eisenhower))
Success!
y: abraham x: fillmore
y: delano x: fillmore
y: grover x: fillmore

14

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (query (ancestor ?a barack)

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (query (ancestor ?a barack)
 (ancestor ?a herbert))

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (query (ancestor ?a barack)
 (ancestor ?a herbert))
Success!

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (query (ancestor ?a barack)
 (ancestor ?a herbert))
Success!
a: fillmore

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Recursive Facts

A fact is recursive if the same relation is mentioned in a hypothesis and the conclusion.

logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

logic> (query (ancestor ?a barack)
 (ancestor ?a herbert))
Success!
a: fillmore
a: eisenhower

16

Delano

HerbertClinton

Abraham

Barack

Fillmore

Eisenhower

Grover

Searching to Satisfy Queries

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower
logic> (fact (parent delano herbert))

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))
logic> (fact (ancestor ?a ?y) (parent ?a ?y))

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))
logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))
logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

(parent delano herbert) ; (1), a simple fact

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))
logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

(parent delano herbert) ; (1), a simple fact

(ancestor delano herbert) ; (2), from (1) and the 1st ancestor fact

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))
logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

(parent delano herbert) ; (1), a simple fact

(ancestor delano herbert) ; (2), from (1) and the 1st ancestor fact

(parent fillmore delano) ; (3), a simple fact

17

Searching to Satisfy Queries

The Logic interpreter performs a search in the space of relations for each query
to find satisfying assignments.
logic> (query (ancestor ?a herbert))
Success!
a: delano
a: fillmore
a: eisenhower
logic> (fact (parent delano herbert))
logic> (fact (parent fillmore delano))
logic> (fact (ancestor ?a ?y) (parent ?a ?y))
logic> (fact (ancestor ?a ?y) (parent ?a ?z) (ancestor ?z ?y))

(parent delano herbert) ; (1), a simple fact

(ancestor delano herbert) ; (2), from (1) and the 1st ancestor fact

(parent fillmore delano) ; (3), a simple fact

(ancestor fillmore herbert) ; (4), from (2), (3), & the 2nd ancestor fact

17

Hierarchical Facts

Hierarchical Facts

19

Hierarchical Facts

Relations can contain relations in addition to symbols.

19

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))

19

A

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))

19

A

B

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))

19

A

B C

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))

19

A D

B C

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))

19

E

A D

B C

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))

19

E

F

A D

B C

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))
logic> (fact (dog (name grover) (color tan)))

19

E

F

A D G

B C

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color gray)))

19

E

F

A D G

B C H

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color gray)))

Variables can refer to symbols or whole relations.

19

E

F

A D G

B C H

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color gray)))

Variables can refer to symbols or whole relations.
logic> (query (dog (name clinton) (color ?color)))

19

E

F

A D G

B C H

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color gray)))

Variables can refer to symbols or whole relations.
logic> (query (dog (name clinton) (color ?color)))
Success!

19

E

F

A D G

B C H

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color gray)))

Variables can refer to symbols or whole relations.
logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

19

E

F

A D G

B C H

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color gray)))

Variables can refer to symbols or whole relations.
logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

logic> (query (dog (name clinton) ?stats))

19

E

F

A D G

B C H

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color gray)))

Variables can refer to symbols or whole relations.
logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

logic> (query (dog (name clinton) ?stats))
Success!

19

E

F

A D G

B C H

Hierarchical Facts

Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color gray)))

Variables can refer to symbols or whole relations.
logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

logic> (query (dog (name clinton) ?stats))
Success!
stats: (color white)

19

E

F

A D G

B C H

Combining Multiple Data Sources

20

E

F

A D G

B C H

Combining Multiple Data Sources

20

E

F

A D G

B C H

Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

20

E

F

A D G

B C H

Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))

20

E

F

A D G

B C H

Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))
 (ancestor ?y ?x)

20

E

F

A D G

B C H

Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))
 (ancestor ?y ?x)
 (dog (name ?y) (color ?fur)))

20

E

F

A D G

B C H

Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))
 (ancestor ?y ?x)
 (dog (name ?y) (color ?fur)))
Success!

20

E

F

A D G

B C H

Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))
 (ancestor ?y ?x)
 (dog (name ?y) (color ?fur)))
Success!
x: barack fur: tan y: eisenhower

20

E

F

A D G

B C H

Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))
 (ancestor ?y ?x)
 (dog (name ?y) (color ?fur)))
Success!
x: barack fur: tan y: eisenhower
x: clinton fur: white y: abraham

20

E

F

A D G

B C H

Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))
 (ancestor ?y ?x)
 (dog (name ?y) (color ?fur)))
Success!
x: barack fur: tan y: eisenhower
x: clinton fur: white y: abraham
x: grover fur: tan y: eisenhower

20

E

F

A D G

B C H

Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))
 (ancestor ?y ?x)
 (dog (name ?y) (color ?fur)))
Success!
x: barack fur: tan y: eisenhower
x: clinton fur: white y: abraham
x: grover fur: tan y: eisenhower
x: herbert fur: gray y: fillmore

20

E

F

A D G

B C H

