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Announcements

• Project 4 due Thursday 11/21 @ 11:59pm.

• Extra reader office hours in 405 Soda this week.

!Wednesday: 5:30pm-7pm

!Thursday: 5:30pm-7pm

• Homework 10 due Tuesday 11/26 @ 11:59pm.

• Recursive art contest entries will be due Monday 12/2 @ 11:59pm (After Thanksgiving).
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Characteristics of declarative languages:

• A "program" is a description of the desired solution.

• The interpreter figures out how to generate such a solution.

In imperative languages such as Python & Scheme:

• A "program" is a description of computational processes.

• The interpreter carries out execution and evaluation rules.

Building a universal problem solver is hard.

Declarative languages often handle only some subset of problems.
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is satisfied if all the <relationK> are true.
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The Logic interpreter performs a search in the space of relations for each query 
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(ancestor delano herbert)   ; (2), from (1) and the 1st ancestor fact
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Relations can contain relations in addition to symbols.
logic> (fact (dog (name abraham) (color white)))
logic> (fact (dog (name barack) (color tan)))
logic> (fact (dog (name clinton) (color white)))
logic> (fact (dog (name delano) (color white)))
logic> (fact (dog (name eisenhower) (color tan)))
logic> (fact (dog (name fillmore) (color gray)))
logic> (fact (dog (name grover) (color tan)))
logic> (fact (dog (name herbert) (color gray)))

Variables can refer to symbols or whole relations.
logic> (query (dog (name clinton) (color ?color)))
Success!
color: white

logic> (query (dog (name clinton) ?stats))
Success!
stats: (color white)
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logic> (query (dog (name ?x) (color ?fur))
              (ancestor ?y ?x)
              (dog (name ?y) (color ?fur)))
Success!
x: barack    fur: tan     y: eisenhower

20

E

F

A D G

B C H



Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))
              (ancestor ?y ?x)
              (dog (name ?y) (color ?fur)))
Success!
x: barack    fur: tan     y: eisenhower
x: clinton   fur: white   y: abraham

20

E

F

A D G

B C H



Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))
              (ancestor ?y ?x)
              (dog (name ?y) (color ?fur)))
Success!
x: barack    fur: tan     y: eisenhower
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Combining Multiple Data Sources

Which dogs have an ancestor of the same color?

logic> (query (dog (name ?x) (color ?fur))
              (ancestor ?y ?x)
              (dog (name ?y) (color ?fur)))
Success!
x: barack    fur: tan     y: eisenhower
x: clinton   fur: white   y: abraham
x: grover    fur: tan     y: eisenhower
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