
61A Lecture 30

Monday, November 18

Announcements

• Homework 9 due Tuesday 11/19 @ 11:59pm

• Project 4 due Thursday 11/21 @ 11:59pm

• Extra reader office hours in 405 Soda this week

!Monday: 5pm-6:30pm

!Tuesday: 6pm-7:30pm

!Wednesday: 5:30pm-7pm

!Thursday: 5:30pm-7pm

2

Information Hiding

Attributes for Internal Use

An attribute name that starts with one underscore is not meant to be referenced externally.

4

This naming convention is not enforced, but is typically respected.

A programmer who designs and maintains a public module may change internal-use names.

Starting a name with two underscores enforces restricted access from outside the class.

class FibIter:
 """An iterator over Fibonacci numbers."""
 def __init__(self):
 self._next = 0
 self._addend = 1

 def __next__(self):
 result = self._next
 self._addend, self._next = self._next, self._addend + self._next
 return result

>>> fibs = FibIter()
>>> [next(fibs) for _ in range(10)]
[0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

"Please don't reference these directly. They may change."

Names in Local Scope

A name bound in a local frame is not accessible to other environments, except those that
extend the frame.

5

def fib_generator():
 """A generator function for Fibonacci numbers.

 >>> fibs = fib_generator()
 >>> [next(fibs) for _ in range(10)]
 [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]
 """
 yield 0
 previous, current = 0, 1
 while True:
 yield current
 previous, current = current, previous + current

There is no way to access values bound
to "previous" and "current" externally

Singleton Objects

A singleton class is a class that only ever has one instance.

NoneType, the class of None, is a singleton class. None is its only instance.

For user-defined singletons, some programmers re-bind the class name to the instance.

6

class empty_iterator:
 """An iterator over no values."""
 def __next__(self):
 raise StopIteration
empty_iterator = empty_iterator()

The classThe instance

Streams

Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

8

 Rlist(__________________ , __________________)

First element
can be anything

Stream(__________________ , __________________)

First element
can be anything

Second element is
an Rlist or
Rlist.empty

Second element is
a zero-argument
function that

returns a Stream
or Stream.empty

Once created, Streams and Rlists can be used interchangeably using first and rest methods.

(Demo)

Integer Stream

An integer stream is a stream of consecutive integers.

An integer stream starting at first is constructed from first and a function
compute_rest that returns the integer stream starting at first+1.

def integer_stream(first=1):
 """Return a stream of consecutive integers, starting with first.

 >>> s = integer_stream(3)
 >>> s.first
 3
 >>> s.rest.first
 4
 """"
 def compute_rest():
 return integer_stream(first+1)
 return Stream(first, compute_rest)

9

(Demo)

Stream Processing

(Demo)

Stream Implementation

Stream Implementation

A stream is a recursive list with an explicit first element and a rest-of-the-list that
is computed lazily.

class Stream:
 """A lazily computed recursive list."""
 class empty:
 def __repr__(self):
 return 'Stream.empty'
 empty = empty()

 def __init__(self, first, compute_rest=lambda: Stream.empty):
 assert callable(compute_rest), 'compute_rest must be callable.'
 self.first = first
 self._compute_rest = compute_rest

 @property
 def rest(self):
 """Return the rest of the stream, computing it if necessary."""
 if self._compute_rest is not None:
 self._rest = self._compute_rest()
 self._compute_rest = None
 return self._rest

12

Higher-Order Functions on Streams

Mapping a Function over a Stream

Mapping a function over a stream applies a function only to the first element right
away. The rest is computed lazily.

def map_stream(fn, s):
 """Map a function fn over the elements of a stream s."""
 if s is Stream.empty:
 return s
 def compute_rest():
 return map_stream(fn, s.rest)
 return Stream(fn(s.first), compute_rest)

This body is not
executed until

compute_rest is called

Not called yet

14

>>> s = integer_stream(3)
>>> s
Stream(3, <...>)
>>> m = map_stream(lambda x: x*x, s)
>>> first_k(m, 5)
[9, 16, 25, 36, 49]

Filtering a Stream

When filtering a stream, processing continues until an element is kept in the output.

def filter_stream(fn, s):
 """Filter stream s with predicate function fn."""
 if s is Stream.empty:
 return s
 def compute_rest():
 return filter_stream(fn, s.rest)
 if fn(s.first):
 return Stream(s.first, compute_rest)
 else:
 return compute_rest()

Actually compute the rest

15

A Stream of Primes

The stream of integers not divisible by any k <= n is:

• The stream of integers not divisible by any k < n,

• Filtered to remove any element divisible by n.

• This recurrence is called the Sieve of Eratosthenes.

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13

16

(Demo)

