61A Lecture 30

Monday, November 18

Announcements

Announcements

Homework 9 due Tuesday 11/19 @ 11:59pm

Announcements

Homework 9 due Tuesday 11/19 @ 11:59pm
*Project 4 due Thursday 11/21 @ 11:59pm

Announcements

Homework 9 due Tuesday 11/19 @ 11:59pm
Project 4 due Thursday 11/21 @ 11:59pm
Extra reader office hours in 405 Soda this week
Monday: 5pm-6:30pm
Tuesday: 6pm-7:30pm
Wednesday: 5:30pm-7pm
Thursday: 5:30pm-7pm

Information Hiding

Attributes for Internal Use

An attribute name that starts with one underscore is not meant to be referenced externally.

Attributes for Internal Use

An attribute name that starts with one underscore is not meant to be referenced externally.

class FibIter:

mirn

An iterator over Fibonaccli numbers.
def init (self):

self. next = 0
self. addend = 1

miumnn

def next (self):

result = self. next
self. addend, self. next = self. next, self. addend + self. next
return result

Attributes for Internal Use

An attribute name that starts with one underscore is not meant to be referenced externally.

class FibIter:

mirn

An iterator over Fibonaccli numbers.

. >>> fibs = FibIter()
>>> i i
der _init_(se15): [reyecee fox e senee(10)]
self. next = 0 (o, 1, 1, 2, 3, 5, 38, ’ r]
self. addend = 1

def next (self):
result = self. next

self. addend, self. next = self. next, self. addend + self. next
return result

Attributes for Internal Use

An attribute name that starts with one underscore is not meant to be referenced externally.

class FibIter:

"o . . . >>> fibs = FibIter()
An iterator over Fibonaccl numbers. >>> [next (fibs) for in range(10)
def _ init (self): [- 9]

s 1, 1, 2 1 21 4
self¢_next =0 [OI ’ 14 7 3, 5/ 8, 3, ’ 3]

self; addend = 1

miumnn

-i¥ "Please don't reference these directly. They may change."]

def next (self):
result = self. next
self. addend, self. next = self. next, self. addend + self. next
return result

Attributes for Internal Use

An attribute name that starts with one underscore is not meant to be referenced externally.

class FibIter:

"o . . . >>> fibs = FibIter()
An iterator over Fibonaccl numbers. >>> [next (fibs) for in range(10)
def _ init (self): [— 9]

R 1, 1, 2 1 21 4
Self‘_next =0 [OI ’ 14 7 3/ 5/ 8, 3, ’ 3]

self; addend = 1

miumnn

-i¥ "Please don't reference these directly. They may change."]

def next (self):
result = self. next
self. addend, self. next = self. next, self. addend + self. next
return result

This naming convention is not enforced, but is typically respected.

Attributes for Internal Use

An attribute name that starts with one underscore is not meant to be referenced externally.

class FibIter:

"o . . . >>> fibs = FibIter()
An iterator over Fibonaccl numbers. >>> [next (fibs) for in range(10)
def _ init_ (self): [— 9]

R 1, 1, 2 1 21 4
self‘_next =0 [OI ’ 7 7 3/ 5/ 8, 3, ’ 3]

self; addend = 1

miumnn

-i¥ "Please don't reference these directly. They may change."]

def next (self):
result = self. next
self. addend, self. next = self. next, self. addend + self. next
return result

This naming convention is not enforced, but is typically respected.

A programmer who designs and maintains a public module may change internal-use names.

Attributes for Internal Use

An attribute name that starts with one underscore is not meant to be referenced externally.

class FibIter:

"o . . . >>> fibs = FibIter()
An iterator over Fibonaccl numbers. >>> [next (fibs) for in range(10)
def _ init_ (self): [— 9]

R 1, 1, 2 1 21 4
self%_next =0 [Ol ’ 7 7 3/ 5/ 8, 3, ’ 3]

self; addend = 1

miumnn

-i¥ "Please don't reference these directly. They may change."]

def next (self):
result = self. next
self. addend, self. next = self. next, self. addend + self. next
return result

This naming convention is not enforced, but is typically respected.
A programmer who designs and maintains a public module may change internal-use names.

Starting a name with two underscores enforces restricted access from outside the class.

Names in Local Scope

A name bound in a local frame is not accessible to other environments, except those that
extend the frame.

Names in Local Scope

A name bound in a local frame is not accessible to other environments, except those that
extend the frame.

def fib generator():
"""A generator function for Fibonacci numbers.

>>> fibs = fib generator()
>>> [next(fibs) for _ in range(10)]
(o, 1, 1, 2, 3, 5, 8, 13, 21, 34]
yield 0
previous, current = 0, 1
while True:
yield current
previous, current = current, previous + current

Names in Local Scope

A name bound in a local frame is not accessible to other environments, except those that
extend the frame.

def fib generator():
"""A generator function for Fibonacci numbers.

There is no way to access values bound
to "previous" and "current" externally

>>> fibs = fib generator()
>>> [next(fibs) for _ in range(10)]
(o, 1, 1, 2, 3, 5, 8, 13, 21, 34]
yield 0
previous, current = 0, 1
while True:

yield current

previous, current = current, previous + current

Singleton Objects

Singleton Objects

A singleton class is a class that only ever has one instance.

Singleton Objects

A singleton class is a class that only ever has one instance.

NoneType, the class of None, is a singleton class. None is its only instance.

Singleton Objects

A singleton class is a class that only ever has one instance.
NoneType, the class of None, is a singleton class. None is its only instance.

For user-defined singletons, some programmers re-bind the class name to the instance.

Singleton Objects

A singleton class is a class that only ever has one instance.
NoneType, the class of None, is a singleton class. None is its only instance.

For user-defined singletons, some programmers re-bind the class name to the instance.

class empty iterator:
"""An iterator over no values.
def next (self):
raise StopIteration
empty iterator = empty iterator()

mnmimnn

Singleton Objects

A singleton class is a class that only ever has one instance.
NoneType, the class of None, is a singleton class. None is its only instance.

For user-defined singletons, some programmers re-bind the class name to the instance.

class empty iterator:
"""An iterator over no values.
def next (self):
raise StopIteration
empty iterator = empty iterator()

The class

mnmimnn

Singleton Objects

A singleton class is a class that only ever has one instance.
NoneType, the class of None, is a singleton class. None is its only instance.

For user-defined singletons, some programmers re-bind the class name to the instance.

class empty iterator:
"""An iterator over no values.
def next (self):
raise StopIteration
empty iterator = empty iterator()

The instance 1 The class

mnmimnn

Streams

Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

RllSt(’)

Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

can be anything

{ First element }
RllSt(’)

Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

First element

{can be anything Rlist.empty
RllSt(’)

Second element is
} an Rlist or

Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

Second element is
First element an Rlist or
can be anything Rlist.empty
RllSt(’)

Stream(’)

Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

Second element is
First element an Rlist or
can be anything Rlist.empty
RllSt(’

First element
can be anything
Stream(’)

Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

Second element is
First element an Rlist or
can be anything Rlist.empty
Rlist(. 7)

Second element is
a zero-argument
} function that

returns a Stream
or Stream.empty

N\))

can be anything

{ First element
(

Stream

’

Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

Second element is
First element an Rlist or
can be anything Rlist.empty
Rlist(. 7))

Second element 1is
a zero-argument
function that

{ First element } returns a Stream

can be anything or Stream.empty
Stream() 7))

Once created, Streams and Rlists can be used interchangeably using first and rest methods.

Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

Second element is
First element an Rlist or
can be anything Rlist.empty
Rlist(. 7))

Second element 1is
a zero-argument
function that

{ First element } returns a Stream

can be anything or Stream.empty
Stream() 7))

Once created, Streams and Rlists can be used interchangeably using first and rest methods.

(Demo)

Integer Stream

An integer stream is a stream of consecutive integers.

An integer stream starting at first is constructed from first and a function
compute_rest that returns the integer stream starting at first+1.

Integer Stream

An integer stream is a stream of consecutive integers.

An integer stream starting at first is constructed from first and a function
compute_rest that returns the integer stream starting at first+1.

def integer stream(first=1):
"""Return a stream of consecutive integers, starting with first.

>>> s = integer stream(3)
>>> s, first
3
>>> s.rest.first
4
def compute rest():
return integer stream(first+1)
return Stream(first, compute rest)

Integer Stream

An integer stream is a stream of consecutive integers.

An integer stream starting at first is constructed from first and a function
compute_rest that returns the integer stream starting at first+1.

def integer stream(first=1):
"""Return a stream of consecutive integers, starting with first.

>>> s = integer stream(3)
>>> s, first
3
>>> s.rest.first
4
def compute rest():
return integer stream(first+1)
return Stream(first, compute rest)

(Demo)

Stream Processing

Stream Processing

(Demo)

Stream Implementation

Stream Implementation

Stream Implementation

A stream is a recursive list with an explicit first element and a rest—-of-the-list that
is computed lazily.

Stream Implementation

A stream is a recursive list with an explicit first element and a rest—-of-the-list that
is computed lazily.

class Stream:
"""A lazily computed recursive list."""

Stream Implementation

A stream is a recursive list with an explicit first element and a rest-of-the-list that
is computed lazily.

class Stream:
"""A lazily computed recursive list."""
class empty:
def __repr__(self):
return 'Stream.empty'’
empty = empty()

Stream Implementation

A stream is a recursive list with an explicit first element and a rest-of-the-list that
is computed lazily.

class Stream:
"""A lazily computed recursive list."""
class empty:
def __repr__(self):
return 'Stream.empty'’
empty = empty()

def __init_ (self, first, compute_rest=1lambda: Stream.empty):
assert callable(compute_rest), 'compute_rest must be callable.'
self.first = first
self._compute_rest = compute_rest

Stream Implementation

A stream is a recursive list with an explicit first element and a rest-of-the-list that
is computed lazily.

class Stream:
"""A lazily computed recursive list."""
class empty:
def __repr__(self):
return 'Stream.empty'’
empty = empty()

def __init_ (self, first, compute_rest=1lambda: Stream.empty):
assert callable(compute_rest), 'compute_rest must be callable.'
self.first = first
self._compute_rest = compute_rest

@property
def rest(self):
"""Return the rest of the stream, computing it if necessary."""
if self._compute_rest is not None:
self._rest = self._compute_rest()
self._compute_rest = None
return self._rest

Higher-Order Functions on Streams

Mapping a Function over a Stream

Mapping a Function over a Stream

Mapping a function over a stream applies a function only to the first element right
away. The rest is computed lazily.

Mapping a Function over a Stream

Mapping a function over a stream applies a function only to the first element right
away. The rest is computed lazily.

def map_stream(fn, s):
"""Map a function fn over the elements of a stream s."""
if s is Stream.empty:
return s
def compute_rest():
return map_stream(fn, s.rest)
return Stream(fn(s.first), compute_rest)

Mapping a Function over a Stream

Mapping a function over a stream applies a function only to the first element right
away. The rest is computed lazily.

def map_stream(fn, s):

"""Map a function fn over the elements of a stream s."""
if s is Stream.empty: _ _
return s This body is not

def ¢ tO): executed until
e compute_rest) : compute_rest is called

return Stream(fn(s.first), compute_rest)

Mapping a Function over a Stream

Mapping a function over a stream applies a function only to the first element right
away. The rest is computed lazily.

def map_stream(fn, s):

"""Map a function fn over the elements of a stream s."""
if s is Stream.empty: _ _
return s This body is not

def ¢ tO): executed until
e compute_rest) : compute_rest is called

return Stream(fn(s.first), compute_rest)
A

Not called yet

Mapping a Function over a Stream

Mapping a function over a stream applies a function only to the first element right
away. The rest is computed lazily.

def map_stream(fn, s):

"""Map a function fn over the elements of a stream s."""
if s is Stream.empty: _ _
return s This body is not

def ¢ tO): executed until
e compute_rest) : compute_rest is called

return Stream(fn(s.first), compute_rest)
A

Not called yet
>>> s = integer stream(3)
>>> g
Stream(3, <...>)
>>> m = map stream(lambda x: xX*x, s)
>>> first k(m, 5)

[9, 16, 25, 36, 49]

Filtering a Stream

Filtering a Stream

When filtering a stream, processing continues until an element is kept in the output.

Filtering a Stream

When filtering a stream, processing continues until an element is kept in the output.

def filter_stream(fn, s):
""MFilter stream s with predicate function fn.
if s is Stream.empty:
return s
def compute_rest():
return filter_stream(fn, s.rest)
if fn(s.first):
return Stream(s.first, compute_rest)
else:
return compute_rest()

Filtering a Stream

When filtering a stream, processing continues until an element is kept in the output.

def filter_stream(fn, s):
""MFilter stream s with predicate function fn.
if s is Stream.empty:
return s
def compute_rest():
return filter_stream(fn, s.rest)
if fn(s.first):
return Stream(s.first, compute_rest)
else:

return compute_rest()
/\

Actually compute the rest

A Stream of Primes

A Stream of Primes

The stream of integers not divisible by any k <= n is:

A Stream of Primes

The stream of integers not divisible by any k <= n is:

The stream of integers not divisible by any k < n,

A Stream of Primes

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n,

Filtered to remove any element divisible by n.

A Stream of Primes

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n,
Filtered to remove any element divisible by n.

This recurrence is called the Sieve of Eratosthenes.

A Stream of Primes

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n,
Filtered to remove any element divisible by n.

This recurrence is called the Sieve of Eratosthenes.

2, 3, 4, 5, 6, 7,8, 9, 10, 11, 12, 13

A Stream of Primes

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n,
Filtered to remove any element divisible by n.

This recurrence is called the Sieve of Eratosthenes.

2, 3, 4, 5, 6, 7,8, 9, 10, 11, 12, 13
-

A Stream of Primes

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n,
Filtered to remove any element divisible by n.

*This recurrence is called the Sieve of Eratosthenes.

i 3,\4< 5,\&< 7,\&,\ 9, \m\ 11, ix{ 13

A Stream of Primes

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n,
Filtered to remove any element divisible by n.

*This recurrence is called the Sieve of Eratosthenes.

21\4{ 5,\&< 7,\&,\ 9, \m\ 11, i\2\< 13

A Stream of Primes

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n,
Filtered to remove any element divisible by n.

*This recurrence is called the Sieve of Eratosthenes.

21\4{ 5,6, 7\&,\\9\}@\ 11, 12, 13

A Stream of Primes

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n,
Filtered to remove any element divisible by n.

*This recurrence is called the Sieve of Eratosthenes.

2, 3\4{1\&< 7\&,\\9\}@\ 11, 12, 13

A Stream of Primes

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n,
Filtered to remove any element divisible by n.

*This recurrence is called the Sieve of Eratosthenes.

2, 3\4{1\&< 7\8\\.\}@\ 11, 12, 13

(Demo)

