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Announcements

Homework 9 due Tuesday 11/19 @ 11:59pm
Project 4 due Thursday 11/21 @ 11:59pm
Extra reader office hours in 405 Soda this week
Monday: 5pm-6:30pm
Tuesday: 6pm-7:30pm
Wednesday: 5:30pm-7pm
Thursday: 5:30pm-7pm
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Attributes for Internal Use

An attribute name that starts with one underscore is not meant to be referenced externally.

class FibIter:

"o . . . >>> fibs = FibIter()
An iterator over Fibonaccl numbers. >>> [next (fibs) for in range(10)
def _ init_ (self): [ — 9 ]

R 1, 1, 2 1 21 4
self%_next =0 [Ol ’ 7 7 3/ 5/ 8, 3, ’ 3 ]

self; addend = 1
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-i¥ "Please don't reference these directly. They may change." ]

def next (self):
result = self. next
self. addend, self. next = self. next, self. addend + self. next
return result

This naming convention is not enforced, but is typically respected.
A programmer who designs and maintains a public module may change internal-use names.

Starting a name with two underscores enforces restricted access from outside the class.
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def fib generator():
"""A generator function for Fibonacci numbers.

>>> fibs = fib generator()
>>> [next(fibs) for _ in range(10)]
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yield 0
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Names in Local Scope

A name bound in a local frame is not accessible to other environments, except those that
extend the frame.

def fib generator():
"""A generator function for Fibonacci numbers.

There is no way to access values bound
to "previous" and "current" externally

>>> fibs = fib generator()
>>> [next(fibs) for _ in range(10)]
(o, 1, 1, 2, 3, 5, 8, 13, 21, 34]
yield 0
previous, current = 0, 1
while True:

yield current

previous, current = current, previous + current
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Singleton Objects

A singleton class is a class that only ever has one instance.
NoneType, the class of None, is a singleton class. None is its only instance.

For user-defined singletons, some programmers re-bind the class name to the instance.

class empty iterator:
"""An iterator over no values.
def next (self):
raise StopIteration
empty iterator = empty iterator()

The instance 1 The class
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Second element is
First element an Rlist or
can be anything Rlist.empty
Rlist( . 7 )

Second element is
a zero-argument
} function that
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Streams are Lazy Recursive Lists

A stream is a recursive list, but the rest of the list is computed on demand.

Second element is
First element an Rlist or
can be anything Rlist.empty
Rlist( . 7))

Second element 1is
a zero-argument
function that

{ First element } returns a Stream

can be anything or Stream.empty
Stream( ) 7))

Once created, Streams and Rlists can be used interchangeably using first and rest methods.

(Demo)
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>>> s = integer stream(3)
>>> s, first
3
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return Stream(first, compute rest)



Integer Stream

An integer stream is a stream of consecutive integers.

An integer stream starting at first is constructed from first and a function
compute_rest that returns the integer stream starting at first+1.

def integer stream(first=1):
"""Return a stream of consecutive integers, starting with first.

>>> s = integer stream(3)
>>> s, first
3
>>> s.rest.first
4
def compute rest():
return integer stream(first+1)
return Stream(first, compute rest)

(Demo)
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Stream Implementation

A stream is a recursive list with an explicit first element and a rest-of-the-list that
is computed lazily.

class Stream:
"""A lazily computed recursive list."""
class empty:
def __repr__(self):
return 'Stream.empty'’
empty = empty()

def __init_ (self, first, compute_rest=1lambda: Stream.empty):
assert callable(compute_rest), 'compute_rest must be callable.'
self.first = first
self._compute_rest = compute_rest

@property
def rest(self):
"""Return the rest of the stream, computing it if necessary."""
if self._compute_rest is not None:
self._rest = self._compute_rest()
self._compute_rest = None
return self._rest
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Mapping a Function over a Stream

Mapping a function over a stream applies a function only to the first element right
away. The rest is computed lazily.

def map_stream(fn, s):

"""Map a function fn over the elements of a stream s."""
if s is Stream.empty: _ _
return s This body is not

def ¢ tO): executed until
e compute_rest ) : compute_rest is called

return Stream(fn(s.first), compute_rest)
A

Not called yet
>>> s = integer stream(3)
>>> g
Stream(3, <...>)
>>> m = map stream(lambda x: xX*x, s)
>>> first k(m, 5)

[9, 16, 25, 36, 49]
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def filter_stream(fn, s):
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if s is Stream.empty:
return s
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return filter_stream(fn, s.rest)
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return Stream(s.first, compute_rest)
else:
return compute_rest()



Filtering a Stream

When filtering a stream, processing continues until an element is kept in the output.

def filter_stream(fn, s):
""MFilter stream s with predicate function fn.
if s is Stream.empty:
return s
def compute_rest():
return filter_stream(fn, s.rest)
if fn(s.first):
return Stream(s.first, compute_rest)
else:

return compute_rest()
/\

Actually compute the rest
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The stream of integers not divisible by any k <= n is:
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Filtered to remove any element divisible by n.
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A Stream of Primes

The stream of integers not divisible by any k <= n is:
The stream of integers not divisible by any k < n,
Filtered to remove any element divisible by n.

*This recurrence is called the Sieve of Eratosthenes.

2, 3\4{1\&< 7\8\\.\}@\ 11, 12, 13

(Demo)



