
61A Lecture 29

Friday, November 15

Announcements

• Homework 9 due Tuesday 11/19 @ 11:59pm

• Project 4 due Thursday 11/21 @ 11:59pm

2

Data Processing

Processing Sequential Data

Many data sets can be processed sequentially:

• The set of all Twitter posts

• Votes cast in an election

• Sensor readings of an airplane

• The positive integers: 1, 2, 3, ...

However, the sequence interface we used before does not always apply.

• A sequence has a finite, known length.

• A sequence allows element selection for any element.

Important ideas in big data processing:

• Implicit representations of streams of sequential data

• Declarative programming languages to manipulate and transform data

• Distributed and parallel computing

4

Implicit Sequences

Implicit Sequences

An implicit sequence is a representation of sequential data that does not explicitly
store each element.

Example: The built-in range class represents consecutive integers.

• The range is represented by two values: start and end.

• The length and elements are computed on demand.

• Constant space for arbitrarily long sequences.

(Demo)

6

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

range(-2, 2)

Iterators

The Iterator Interface

An iterator is an object that can provide the next element of a sequence.

The __next__ method of an iterator returns the next element.

The built-in next function invokes the __next__ method on its argument.

If there is no next element, then the __next__ method of an iterator should raise a
StopIteration exception.

8

(Demo)

..., -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, ...

range(-2, 2)iter() <range_iterator object>returns next()

Invokes __iter__
on its argument

Iterable Objects

Iterables and Iterators

Iterator: Mutable object that tracks a position in a sequence, advancing on __next__.

Iterable: Represents a sequence and returns a new iterator on __iter__.

10

(Demo)

'a' 'b' 'c' 'd'Letters is iterable:

LetterIter is an iterator:

Letters('a', 'e')

LetterIter('a', 'e')

LetterIter('a', 'e')

For Statements

The For Statement

for <name> in <expression>:
 <suite>

1.Evaluate the header <expression>, which yields an iterable object.
2.For each element in that sequence, in order:
A.Bind <name> to that element in the first frame of the current environment.
B.Execute the <suite>.

When executing a for statement, __iter__ returns an iterator and __next__ provides each item:

>>> counts = [1, 2, 3]
>>> for item in counts:
 print(item)
1
2
3

>>> counts = [1, 2, 3]
>>> items = counts.__iter__()
>>> try:
 while True:
 item = items.__next__()
 print(item)
 except StopIteration:
 pass
1
2
3

12

Generator Functions

Generators and Generator Functions

A generator is an iterator backed by a generator function.

A generator function is a function that yields values.

When a generator function is called, it returns a generator.

>>> def letters_generator(next_letter, end):
... while next_letter < end:
... yield next_letter
... next_letter = chr(ord(next_letter)+1)

>>> for letter in letters_generator('a', 'e'):
... print(letter)
a
b
c
d

14

(Demo)

Generator Examples

fib_generator(): "Yield Fibonacci numbers."

all_pairs(s): "Yield pairs of elements from iterable s."

Letters.__iter__(): "Yield sequential letters."

powerset(t): "Yield all subsets of iterator t."

15

