61A Lecture 26

Wednesday, November 6

Interpreting Scheme

Special Forms

Announcements

«Project 1 composition revisions due Thursday 11/7 @ 11:59pm.
-Homework 8 due Tuesday 11/12 @ 11:59pm, and it's in Scheme!
<Project 4 due Thursday 11/21 @ 11:59pm, and it's a Scheme interpreter!
-New Policy: An improved final exam score can make up for low midterm scores.
If you scored less than 60/100 midterm points total, then you can earn some points back.

You don't need a perfect score on the final to do so.

The Structure of an Interpreter

Base cases: Eval
« Primitive values (numbers)
* Look up values bound to symbols

Recursive calls:

« Eval(operator, operands) of call expressions
* Apply(procedure, arguments)

* Eval(sub-expressions) of special forms

Requires an
environment
for symbol
Tlookup

Base cases: Apply
* Built-in primitive procedures
Recursive calls:

Creates a new « Eval(body) of user-defined procedures
environment each time
a user-defined
procedure is applied

Scheme Evaluation

The scheme_eval function dispatches on expression form:
+Symbols are bound to values in the current environment.
-Self-evaluating expressions are returned.

<A1l other legal expressions are represented as Scheme lists, called combinations.

(1f <predicate> <consequent> <alternative>)

Special forms (; bz

Any combination

are :
identified by that is not a

known special
form is a call
expression

the first T
list element | (<operator> <operand 0> ... <operand k>)

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

Logical Forms

Quotation

Lambda Expressions

Logical Special Forms

Logical forms may only evaluate some sub-expressions.
« If expression: (if <predicate> <consequent> <alternative>)
* And and or: (and <e1> ... <ep>) (or <e> ... <ep>)

« Cond expr'n: (cond (<p1> <er>) ... (<ps> <ey>) (else <e>))

The value of an if expression is the value of a sub-expression.

[+ Evaluate the predicate. i{_do_if_form

i+ Choose a sub-expression: <consequent> or <alternative>. |

« Evaluate that sub-expression in place of the whole expression.

(Demo)

Quotation
The quote special form evaluates to the quoted expression, which is not evaluated.

evaluates to the

(quote <expression>) (quote (+ 1 2)) e Seans ise (+12)
The <expression> itself is the value of the whole quote expression.
'<expression> is shorthand for (quote <expression>).
(quote (1 2)) is equivalent to '(12)
The scheme_read parser converts shorthand to a combination.
(Demo)
Lambda Expressions
Lambda expressions evaluate to user-defined procedures.
(lambda (<formal-parameters>) <body>)
(lambda (x) (x x x))
class LambdaProcedure:
def __init__(self, formals, body, env):
self.formals = formals A scheme list of symbols

self.body = body A scheme expression

self.env = env A Frame instance

Frames and Environments
A frame represents an environment by having a parent frame.
Frames are Python instances with methods lookup and define.

In Project 4, Frames do not hold return values.

Define Expressions
g: Global frame

y | 3
z 5

f1: [parent=g]

x | 2
z | 4
(Demo)

Define Expressions Applying User-Defined Procedures

Define binds a symbol to a value in the first frame of the current environment. To apply a user-defined procedure, create a new frame in which formal parameters are
bound to argument values, whose parent is the env of the procedure.
(define <name> <expression>) Evaluate the body of the procedure in the environment that starts with this new frame.

1. Evaluate the <expression>.

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))
2. Bind <name> to its value in the current frame.

(demo (list 1 2))

(define x (+ 1 2)) g: Global frame

demo ~ [LambdaProcedure instance [parent=g]

[parent=g] s

Procedure definition is shorthand of define with a lambda expression.

(define (<name> <formal parameters>) <body>)

[parent=g] s
[parent=g] s

(define <name> (lambda (<formal parameters>) <body>))

Eval/Apply in Lisp 1.5
apply[fn;x;a] =

[atom([fn] - [eq[fn;CAR] ~ caar[x];
eq[fn;CDR] - cdar[x];
eq[fn; CONS] ~ cons[car[x];cadr[x]};
eq[fn; ATOM] — atom[car[x]];
eq[fn; EQ] - eq[car[x];cadr([x]};
T —apply[eval[fn;a]ix;a]];

eq[car[fn; LAMBDA] — eval[caddr[fn];pairlis[cadr[fn};x;a]];

eq[car[fn; LABEL] - apply[caddr[fn};x;cons[cons[cadr[fn];

caddr[fn]];a]]]

Dynamic Scope

evalle;a] = [atom[e] - cdr[assoc[e;a]];
atom([car[e]] =
|ea[car[e].QUOTE] - cadr[e];
eq[car[e];COND] - evcon[cdr[e];a];
T - apply[car[e];evlis[cdr[e];a];a]);
T - apply[car[e];evlis[cdr[e];a];a]]

Dynamic Scope
The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in which a procedure was called.

Special form to create
dynamically scoped procedures

mu
(define f (fembda (x) (+ x y)))
(define g (lambda (x y) (f (+ x x))))
(g 37)

Lexical scope: The parent for f's frame is the global frame.
Error: unknown identifier: y

Dynamic scope: The parent for f's frame is g's frame.
13

