
61A Lecture 26

Wednesday, November 6

Announcements

2

Announcements

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

2

Announcements

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Homework 8 due Tuesday 11/12 @ 11:59pm, and it's in Scheme!

2

Announcements

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Homework 8 due Tuesday 11/12 @ 11:59pm, and it's in Scheme!

• Project 4 due Thursday 11/21 @ 11:59pm, and it's a Scheme interpreter!

2

Announcements

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Homework 8 due Tuesday 11/12 @ 11:59pm, and it's in Scheme!

• Project 4 due Thursday 11/21 @ 11:59pm, and it's a Scheme interpreter!

• New Policy: An improved final exam score can make up for low midterm scores.

2

Announcements

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Homework 8 due Tuesday 11/12 @ 11:59pm, and it's in Scheme!

• Project 4 due Thursday 11/21 @ 11:59pm, and it's a Scheme interpreter!

• New Policy: An improved final exam score can make up for low midterm scores.

If you scored less than 60/100 midterm points total, then you can earn some points back.

2

Announcements

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Homework 8 due Tuesday 11/12 @ 11:59pm, and it's in Scheme!

• Project 4 due Thursday 11/21 @ 11:59pm, and it's a Scheme interpreter!

• New Policy: An improved final exam score can make up for low midterm scores.

If you scored less than 60/100 midterm points total, then you can earn some points back.

You don't need a perfect score on the final to do so.

2

Interpreting Scheme

The Structure of an Interpreter

4

The Structure of an Interpreter

4

Apply

Eval

The Structure of an Interpreter

4

Apply

EvalBase cases:

The Structure of an Interpreter

4

Apply

EvalBase cases:
• Primitive values (numbers)

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:

Base cases:
• Primitive values (numbers)

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions

Base cases:
• Primitive values (numbers)

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)

Base cases:
• Primitive values (numbers)

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)

Base cases:
• Primitive values (numbers)

Base cases:
• Built-in primitive procedures

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for symbol

lookup

The Structure of an Interpreter

4

Apply

Eval

Recursive calls:
• Eval(operator, operands) of call expressions
• Apply(procedure, arguments)
• Eval(sub-expressions) of special forms

Base cases:
• Primitive values (numbers)
• Look up values bound to symbols

Base cases:
• Built-in primitive procedures
Recursive calls:
• Eval(body) of user-defined procedures

Requires an
environment
for symbol

lookup

Creates a new
environment each time

a user-defined
procedure is applied

Special Forms

Scheme Evaluation

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

• All other legal expressions are represented as Scheme lists, called combinations.

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

• All other legal expressions are represented as Scheme lists, called combinations.

(if <predicate> <consequent> <alternative>)

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

• All other legal expressions are represented as Scheme lists, called combinations.

(if <predicate> <consequent> <alternative>)

(lambda (<formal-parameters>) <body>)

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

• All other legal expressions are represented as Scheme lists, called combinations.

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

• All other legal expressions are represented as Scheme lists, called combinations.

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

• All other legal expressions are represented as Scheme lists, called combinations.

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are

identified by
the first

list element

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

• All other legal expressions are represented as Scheme lists, called combinations.

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are

identified by
the first

list element

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

• All other legal expressions are represented as Scheme lists, called combinations.

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are

identified by
the first

list element

Any combination
that is not a
known special
form is a call

expression

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

• All other legal expressions are represented as Scheme lists, called combinations.

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are

identified by
the first

list element

Any combination
that is not a
known special
form is a call

expression

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

6

Scheme Evaluation

The scheme_eval function dispatches on expression form:

• Symbols are bound to values in the current environment.

• Self-evaluating expressions are returned.

• All other legal expressions are represented as Scheme lists, called combinations.

(if <predicate> <consequent> <alternative>)

(define <name> <expression>)

(lambda (<formal-parameters>) <body>)

(<operator> <operand 0> ... <operand k>)

Special forms
are

identified by
the first

list element

Any combination
that is not a
known special
form is a call

expression

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

6

Logical Forms

Logical Special Forms

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression.

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

• Evaluate that sub-expression in place of the whole expression.

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

• Evaluate that sub-expression in place of the whole expression.

do_if_form

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

• Evaluate that sub-expression in place of the whole expression.

do_if_form

scheme_eval

8

Logical Special Forms

Logical forms may only evaluate some sub-expressions.

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Cond expr'n: (cond (<p1> <e1>) ... (<pn> <en>) (else <e>))

The value of an if expression is the value of a sub-expression.

• Evaluate the predicate.

• Choose a sub-expression: <consequent> or <alternative>.

• Evaluate that sub-expression in place of the whole expression.

do_if_form

scheme_eval

(Demo)

8

Quotation

Quotation

10

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated.

10

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated.

(quote <expression>)

10

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated.

(quote <expression>)

10

(quote (+ 1 2)) (+ 1 2)evaluates to the
three-element Scheme list

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated.

(quote <expression>)

The <expression> itself is the value of the whole quote expression.

10

(quote (+ 1 2)) (+ 1 2)evaluates to the
three-element Scheme list

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated.

(quote <expression>)

The <expression> itself is the value of the whole quote expression.

'<expression> is shorthand for (quote <expression>).

10

(quote (+ 1 2)) (+ 1 2)evaluates to the
three-element Scheme list

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated.

(quote <expression>)

The <expression> itself is the value of the whole quote expression.

'<expression> is shorthand for (quote <expression>).

10

(quote (+ 1 2)) (+ 1 2)evaluates to the
three-element Scheme list

(quote (1 2)) '(1 2)is equivalent to

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated.

(quote <expression>)

The <expression> itself is the value of the whole quote expression.

'<expression> is shorthand for (quote <expression>).

The scheme_read parser converts shorthand to a combination.

10

(quote (+ 1 2)) (+ 1 2)evaluates to the
three-element Scheme list

(quote (1 2)) '(1 2)is equivalent to

Quotation

The quote special form evaluates to the quoted expression, which is not evaluated.

(quote <expression>)

The <expression> itself is the value of the whole quote expression.

'<expression> is shorthand for (quote <expression>).

The scheme_read parser converts shorthand to a combination.

10

(Demo)

(quote (+ 1 2)) (+ 1 2)evaluates to the
three-element Scheme list

(quote (1 2)) '(1 2)is equivalent to

Lambda Expressions

Lambda Expressions

12

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

12

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

(lambda (<formal-parameters>) <body>)

12

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

12

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure:

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

12

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure:

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

A scheme list of symbols

12

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure:

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

A scheme list of symbols

A scheme expression

12

Lambda Expressions

Lambda expressions evaluate to user-defined procedures.

(lambda (<formal-parameters>) <body>)

(lambda (x) (* x x))

class LambdaProcedure:

 def __init__(self, formals, body, env):

 self.formals = formals

 self.body = body

 self.env = env

A scheme list of symbols

A scheme expression

A Frame instance

12

Frames and Environments

13

Frames and Environments

A frame represents an environment by having a parent frame.

13

Frames and Environments

A frame represents an environment by having a parent frame.

Frames are Python instances with methods lookup and define.

13

Frames and Environments

A frame represents an environment by having a parent frame.

Frames are Python instances with methods lookup and define.

In Project 4, Frames do not hold return values.

13

Frames and Environments

A frame represents an environment by having a parent frame.

Frames are Python instances with methods lookup and define.

In Project 4, Frames do not hold return values.

g: Global frame

y
z

3
5

13

Frames and Environments

A frame represents an environment by having a parent frame.

Frames are Python instances with methods lookup and define.

In Project 4, Frames do not hold return values.

g: Global frame

y
z

3
5

f1: [parent=g]

x
z

2
4

13

Frames and Environments

A frame represents an environment by having a parent frame.

Frames are Python instances with methods lookup and define.

In Project 4, Frames do not hold return values.

g: Global frame

y
z

3
5

f1: [parent=g]

x
z

2
4

13

(Demo)

Define Expressions

Define Expressions

15

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

15

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

(define <name> <expression>)

15

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

(define <name> <expression>)

1. Evaluate the <expression>.

15

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

(define <name> <expression>)

1. Evaluate the <expression>.

2. Bind <name> to its value in the current frame.

15

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

(define <name> <expression>)

1. Evaluate the <expression>.

2. Bind <name> to its value in the current frame.

(define x (+ 1 2))

15

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

(define <name> <expression>)

Procedure definition is shorthand of define with a lambda expression.

1. Evaluate the <expression>.

2. Bind <name> to its value in the current frame.

(define x (+ 1 2))

15

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

(define <name> <expression>)

(define (<name> <formal parameters>) <body>)

Procedure definition is shorthand of define with a lambda expression.

1. Evaluate the <expression>.

2. Bind <name> to its value in the current frame.

(define x (+ 1 2))

15

Define Expressions

Define binds a symbol to a value in the first frame of the current environment.

(define <name> <expression>)

(define (<name> <formal parameters>) <body>)

(define <name> (lambda (<formal parameters>) <body>))

Procedure definition is shorthand of define with a lambda expression.

1. Evaluate the <expression>.

2. Bind <name> to its value in the current frame.

(define x (+ 1 2))

15

Applying User-Defined Procedures

16

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are
bound to argument values, whose parent is the env of the procedure.

16

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are
bound to argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that starts with this new frame.

16

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are
bound to argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that starts with this new frame.

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

16

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are
bound to argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that starts with this new frame.

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

g: Global frame

demo LambdaProcedure instance [parent=g]

16

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are
bound to argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that starts with this new frame.

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

g: Global frame

demo LambdaProcedure instance [parent=g]

16

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are
bound to argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that starts with this new frame.

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

1

Pair

2

Pair

nil

g: Global frame

demo LambdaProcedure instance [parent=g]

16

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are
bound to argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that starts with this new frame.

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

g: Global frame

demo LambdaProcedure instance [parent=g]

16

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are
bound to argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that starts with this new frame.

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

g: Global frame

demo LambdaProcedure instance [parent=g]

16

Applying User-Defined Procedures

To apply a user-defined procedure, create a new frame in which formal parameters are
bound to argument values, whose parent is the env of the procedure.

Evaluate the body of the procedure in the environment that starts with this new frame.

(define (demo s) (if (null? s) '(3) (cons (car s) (demo (cdr s)))))

(demo (list 1 2))

1

Pair

2

Pair

nil[parent=g] s

[parent=g] s

[parent=g] s

g: Global frame

demo LambdaProcedure instance [parent=g]

16

Eval/Apply in Lisp 1.5

17

Eval/Apply in Lisp 1.5

17

Dynamic Scope

Dynamic Scope

19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in which a procedure was called.

19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in which a procedure was called.

(define f (lambda (x) (+ x y)))

19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

Dynamic scope: The parent for f's frame is g's frame.

19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

Dynamic scope: The parent for f's frame is g's frame.

Error: unknown identifier: y

19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

Dynamic scope: The parent for f's frame is g's frame.

Error: unknown identifier: y

13
19

Dynamic Scope

The way in which names are looked up in Scheme and Python is called lexical scope
(or static scope).

Lexical scope: The parent of a frame is the environment in which a procedure was defined.

Dynamic scope: The parent of a frame is the environment in which a procedure was called.

(define f (lambda (x) (+ x y)))

(define g (lambda (x y) (f (+ x x))))

(g 3 7)

Lexical scope: The parent for f's frame is the global frame.

Dynamic scope: The parent for f's frame is g's frame.

Error: unknown identifier: y

13

mu

Special form to create
dynamically scoped procedures

19

