
61A Lecture 25

Monday, November 4

Announcements

• Homework 7 due Tuesday 11/5 @ 11:59pm.

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

Instructions are posted on the course website (submit proj1revision)

• Homework 8 due Tuesday 11/12 @ 11:59pm.

All problems must be solved in Scheme

Make sure that you know how to use the Scheme interpreter by attending lab this week!

• An improved final exam score can partially make up for low midterm scores.

This policy will only affect students who might not otherwise pass the course.

• Example for today: http://composingprograms.com/examples/scalc/scalc.html

2

Parsing

Parsing

A Parser takes text and returns an expression.

4

 (+ 1
 (- 23)

 (* 4 5.6))

Text ExpressionLexical
analysis Tokens Syntactic

analysis

'(', '+', 1
'(', '-', 23, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))

printed as

tokenize_line(line)
in scheme_tokens.py

scheme_read(source)
scheme_reader.py

(Demo)

Recursive Syntactic Analysis

A predictive recursive descent parser inspects only k tokens to decide how to proceed,
for some fixed k.

Can English be parsed via predictive recursive descent?

The horse raced past the barn fell.
ridden(that was)

sentence subject

5

In Scheme, k is 1. The open-parenthesis starts a combination, the close-parenthesis
ends a combination, and other tokens are primitive expressions.

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression,
which may be nested.

Each call to scheme_read consumes the input tokens for exactly one expression.

Base case: symbols and numbers are primitive expressions.

Recursive call: scheme_read all sub-expressions and combine them.

6

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

(Demo)

Programming Languages

Programming Languages

A computer typically executes programs written in many different programming languages.

8

Machine languages: statements are interpreted by the hardware itself.

•A fixed set of instructions invoke operations implemented by the circuitry of the
central processing unit (CPU).

•Operations refer to specific hardware memory addresses; no abstraction mechanisms.

High-level languages: statements & expressions are interpreted by another program or
compiled (translated) into another language.

•Provide means of abstraction such as naming, function definition, and objects.
•Abstract away system details to be independent of hardware and operating system.

from dis import dis
dis(square)

def square(x):
 return x * x

Python 3

LOAD_FAST 0 (x)
LOAD_FAST 0 (x)
BINARY_MULTIPLY
RETURN_VALUE

Python 3 Byte Code

Metalinguistic Abstraction

A powerful form of abstraction is to define a new language that is tailored to a particular
type of application or problem domain.

9

Type of application: Erlang was designed for concurrent programs. It has built-in elements
for expressing concurrent communication. It is used, for example, to implement chat
servers with many simultaneous connections.

Problem domain: The MediaWiki mark-up language was designed for generating static web
pages. It has built-in elements for text formatting and cross-page linking. It is used, for
example, to create Wikipedia pages.

A programming language has:

• Syntax: The legal statements and expressions in the language.
• Semantics: The execution/evaluation rule for those statements and expressions.

To create a new programming language, you either need a:

• Specification: A document describe the precise syntax and semantics of the language.
• Canonical Implementation: An interpreter or compiler for the language.

Calculator

(Demo)

The Pair Class

The Pair class represents Scheme pairs and lists. A list is a pair whose second element is
either a list or nil.

11

>>> s = Pair(1, Pair(2, Pair(3, nil)))
>>> print(s)
(1 2 3)
>>> len(s)
3
>>> print(Pair(1, 2))
(1 . 2)
>>> print(Pair(1, Pair(2, 3)))
(1 2 . 3)
>>> len(Pair(1, Pair(2, 3)))
Traceback (most recent call last):
...
TypeError: length attempted on improper list

class Pair:
 """A Pair has two instance attributes:
 first and second.

 For a Pair to be a well-formed list,
 second is either a well-formed list or nil.
 Some methods only apply to well-formed lists.
 """
 def __init__(self, first, second):
 self.first = first
 self.second = second

Scheme expressions are represented as Scheme lists! Homoiconic means source code is data.

Calculator Syntax

The Calculator language has primitive expressions and call expressions. (That's it!)

A primitive expression is a number: 2, -4, 5.6

A call expression is a combination that begins with an operator (+, -, *, /) followed by 0
or more expressions: (+ 1 2 3), (/ 3 (+ 4 5))

12

Expressions are represented as Scheme lists (Pair instances) that encode tree structures.

(* 3
 (+ 4 5)
 (* 6 7 8))

Expression

*

3 +

4 5

*

6 87

Expression Tree

secondfirst
*

secondfirst
3

secondfirst secondfirst
nil

secondfirst
+

secondfirst
4

secondfirst
5 nil

secondfirst
*

secondfirst
6

secondfirst
7

secondfirst
8 nil

Representation as Pairs

Calculator Semantics

The value of a calculator expression is defined recursively.

Primitive: A number evaluates to itself.

Call: A call expression evaluates to its argument values combined by an operator.

+: Sum of the arguments

*: Product of the arguments

-: If one argument, negate it. If more than one, subtract the rest from the first.

/: If one argument, invert it. If more than one, divide the rest from the first.

13

(* 3
 (+ 4 5)
 (* 6 7 8))

Expression

*

3 +

4 5

*

6 87

Expression Tree

9 336

9072

Evaluation

The Eval Function

The eval function computes the value of an expression, which is always a number.

It is a generic function that dispatches on the type of the expression (primitive or call).

15

def calc_eval(exp):

 if type(exp) in (int, float):

 return exp

 elif isinstance(exp, Pair):

 arguments = exp.second.map(calc_eval)

 return calc_apply(exp.first, arguments)

 else:

 raise TypeError

A number evaluates...

A call expression evaluates...

 to its argument values

 to itself

'+', '-',
'*', '/'

A Scheme list
of numbers

Recursive call
returns a number
for each operand

 combined by an operator

Implementation Language Semantics

Applying Built-in Operators

The apply function applies some operation to a (Scheme) list of argument values.

In calculator, all operations are named by built-in operators: +, -, *, /

16

def calc_apply(operator, args):
 if operator == '+':
 return reduce(add, args, 0)
 elif operator == '-':
 ...
 elif operator == '*':
 ...
 elif operator == '/':
 ...
 else:
 raise TypeError

 Sum of the arguments
+:

Implementation Language Semantics

 ...
-:

...

(Demo)

Interactive Interpreters

Read-Eval-Print Loop

The user interface for many programming languages is an interactive interpreter.

Print a prompt.

Read text input from the user.

Parse the text input into an expression.

Evaluate the expression.

If any errors occur, report those errors, otherwise

Print the value of the expression and repeat.

18

(Demo)

Raising Exceptions

Exceptions are raised within lexical analysis, syntactic analysis, eval, and apply.

Example exceptions

• Lexical analysis: The token 2.3.4 raises ValueError("invalid numeral")

• Syntactic analysis: An extra) raises SyntaxError("unexpected token")

• Eval: An empty combination raises TypeError("() is not a number or call expression")

• Apply: No arguments to - raises TypeError("- requires at least 1 argument")

19

(Demo)

Handling Exceptions

An interactive interpreter prints information about each error.

A well-designed interactive interpreter should not halt completely on an error, so that the
user has an opportunity to try again in the current environment.

20

(Demo)

