
61A Lecture 24

Friday, November 1

Announcements

• Homework 7 due Tuesday 11/5 @ 11:59pm.

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

2

Heard on the Dread Pirate Lambda's Fibbonautical Voyage

3

What did the DPL say when he dropped his fruit overboard?

(Oh no, I've lost my pear in the seas!)

When does the Dread Pirate Lambda finally stop plundering?

The base case!

What do people fear most about the Dread Pirate Lambda?

His eval ways!

()
()

()
()

() () () ()

()
()

Exceptions

Today's Topic: Handling Errors

Sometimes, computer programs behave in non-standard ways

• A function receives an argument value of an improper type
• Some resource (such as a file) is not available
• A network connection is lost in the middle of data transmission

Grace Hopper's Notebook, 1947, Moth found in a Mark II Computer

5

Exceptions

A built-in mechanism in a programming language to declare and respond to
exceptional conditions

Python raises an exception whenever an error occurs.

Exceptions can be handled by the program, preventing the interpreter from halting.

Unhandled exceptions will cause Python to halt execution and print a stack trace.

Exceptions are objects! They have classes with constructors.

They enable non-local continuations of control:

If f calls g and g calls h, exceptions can shift control from h to f without waiting
for g to return.

(Exception handling tends to be slow.)

Mastering exceptions:

6

Raising Exceptions

Assert Statements

Assert statements raise an exception of type AssertionError

assert <expression>, <string>

Assertions are designed to be used liberally. They can be ignored to increase efficiency
by running Python with the "-O" flag. "O" stands for optimized.

python3 -O

Whether assertions are enabled is governed by a bool __debug__

8

(Demo)

Raise Statements

Exceptions are raised with a raise statement.

raise <expression>

<expression> must evaluate to a subclass of BaseException or an instance of one.

Exceptions are constructed like any other object. E.g., TypeError('Bad argument!')

TypeError -- A function was passed the wrong number/type of argument

NameError -- A name wasn't found

KeyError -- A key wasn't found in a dictionary

RuntimeError -- Catch-all for troubles during interpretation

9

(Demo)

Try Statements

Try Statements

Try statements handle exceptions

try:
 <try suite>
except <exception class> as <name>:
 <except suite>
...

Execution rule:

The <try suite> is executed first.

If, during the course of executing the <try suite>,
an exception is raised that is not handled otherwise, and

If the class of the exception inherits from <exception class>, then

The <except suite> is executed, with <name> bound to the exception.

11

Handling Exceptions

Exception handling can prevent a program from terminating

>>> try:

 x = 1/0

 except ZeroDivisionError as e:

 print('handling a', type(e))

 x = 0

handling a <class 'ZeroDivisionError'>

>>> x

0

Multiple try statements: Control jumps to the except suite of the most recent
try statement that handles that type of exception.

12

(Demo)

WWPD: What Would Python Do?

How will the Python interpreter respond?

>>> invert_safe(1/0)

>>> try:
... invert_safe(0)
... except ZeroDivisionError as e:
... print('Handled!')

>>> inverrrrt_safe(1/0)

def invert(x):
 result = 1/x # Raises a ZeroDivisionError if x is 0
 print('Never printed if x is 0')
 return result

def invert_safe(x):
 try:
 return invert(x)
 except ZeroDivisionError as e:
 return str(e)

13

Interpreters

A Scheme list is written as elements in parentheses:

(<element_0> <element_1> ... <element_n>)

Each <element> can be a combination or primitive.

(+ (* 3 (+ (* 2 4) (+ 3 5))) (+ (- 10 7) 6))

The task of parsing a language involves coercing a string representation of an
expression to the expression itself.

Parsers must validate that expressions are well-formed.

Reading Scheme Lists

(Demo)
http://composingprograms.com/projects/scalc/scheme_reader.py.html

15

A recursive
Scheme list

Parsing

Parsing

A Parser takes text and returns an expression.

17

 '(+ 1'
 ' (- 23)'

 ' (* 4 5.6))'

Text ExpressionLexical
analysis Tokens Syntactic

analysis

'(', '+', 1
'(', '-', 23, ')'
'(', '*', 4, 5.6, ')', ')'

Pair('+', Pair(1, ...))

(+ 1 (- 23) (* 4 5.6))

printed as

• Iterative process
• Checks for malformed tokens
• Determines types of tokens
• Processes one line at a time

• Tree-recursive process
• Balances parentheses
• Returns tree structure
• Processes multiple lines

Recursive Syntactic Analysis

A predictive recursive descent parser inspects only k tokens to decide how to proceed,
for some fixed k.

Can English be parsed via predictive recursive descent?

The horse raced past the barn fell.
ridden(that was)

sentence subject

18

Syntactic Analysis

Syntactic analysis identifies the hierarchical structure of an expression,
which may be nested.

Each call to scheme_read consumes the input tokens for exactly one expression.

Base case: symbols and numbers

Recursive call: scheme_read sub-expressions and combine them

19

'(', '+', 1, '(', '-', 23, ')', '(', '*', 4, 5.6, ')', ')'

(Demo)

