
61A Lecture 23

Wednesday, October 30

Announcements

• Homework 7 due Tuesday 11/5 @ 11:59pm.

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Midterm 2 is graded.
(And yes, it was very challenging.)
Mean: 30
Solutions will be posted and exams distributed soon.

2

Scheme

http://imgs.xkcd.com/comics/lisp_cycles.png

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "The greatest single programming language ever designed."
 -Alan Kay, co-inventor of Smalltalk and OOP

• "The only computer language that is beautiful."
 -Neal Stephenson, DeNero's favorite sci-fi author

• "God's programming language."
 -Brian Harvey, Berkeley CS instructor extraordinaire

4

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

(Demo)

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Special Forms

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

A procedure is created and bound to the
symbol “abs”

7

Evaluation:
(1) Evaluate the
predicate expression.
(2) Evaluate either
the consequent or
alternative.

(Demo)

Counting Trees

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

(Demo)

The number of trees over n leaves with k leaves in the left and n-k in the right is:
(The number of trees with k leaves) * (The number of trees with n-k leaves)

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the
add-x-&-y-&-z2 procedure

11

Pairs and Lists

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

13

(Demo)

Symbolic Programming

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Symbols are now values

15

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)
 (1 2 3)

What is the printed result of evaluating this expression?

 > (cdr '((1 2) . (3 4 . (5))))
 (3 4 5)

1 2 3

1 2 3 4 nil

1 2 3 nil

16

Sierpinski's Triangle

(Demo)

