
61A Lecture 23

Wednesday, October 30

Announcements

2

Announcements

• Homework 7 due Tuesday 11/5 @ 11:59pm.

2

Announcements

• Homework 7 due Tuesday 11/5 @ 11:59pm.

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

2

Announcements

• Homework 7 due Tuesday 11/5 @ 11:59pm.

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Midterm 2 is graded.

2

Announcements

• Homework 7 due Tuesday 11/5 @ 11:59pm.

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Midterm 2 is graded.
(And yes, it was very challenging.)

2

Announcements

• Homework 7 due Tuesday 11/5 @ 11:59pm.

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Midterm 2 is graded.
(And yes, it was very challenging.)
Mean: 30

2

Announcements

• Homework 7 due Tuesday 11/5 @ 11:59pm.

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Midterm 2 is graded.
(And yes, it was very challenging.)
Mean: 30
Solutions will be posted and exams distributed soon.

2

Scheme

Scheme is a Dialect of Lisp

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "The greatest single programming language ever designed."
 -Alan Kay, co-inventor of Smalltalk and OOP

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "The greatest single programming language ever designed."
 -Alan Kay, co-inventor of Smalltalk and OOP

• "The only computer language that is beautiful."
 -Neal Stephenson, DeNero's favorite sci-fi author

4

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "The greatest single programming language ever designed."
 -Alan Kay, co-inventor of Smalltalk and OOP

• "The only computer language that is beautiful."
 -Neal Stephenson, DeNero's favorite sci-fi author

• "God's programming language."
 -Brian Harvey, Berkeley CS instructor extraordinaire

4

http://imgs.xkcd.com/comics/lisp_cycles.png

Scheme is a Dialect of Lisp

What are people saying about Lisp?

• "The greatest single programming language ever designed."
 -Alan Kay, co-inventor of Smalltalk and OOP

• "The only computer language that is beautiful."
 -Neal Stephenson, DeNero's favorite sci-fi author

• "God's programming language."
 -Brian Harvey, Berkeley CS instructor extraordinaire

4

Scheme Fundamentals

5

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

5

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...

5

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

5

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

5

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

5

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

5

> (quotient 10 2)
5

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

5

> (quotient 10 2)
5

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Scheme Fundamentals

Scheme programs consist of expressions, which can be:

• Primitive expressions: 2, 3.3, true, +, quotient, ...
• Combinations: (quotient 10 2), (not true), ...

Numbers are self-evaluating; symbols are bound to values.

Call expressions include an operator and 0 or more operands in parentheses.

(Demo)

5

> (quotient 10 2)
5
> (quotient (+ 8 7) 5)
3
> (+ (* 3
 (+ (* 2 4)
 (+ 3 5)))
 (+ (- 10 7)
 6))

“quotient” names Scheme’s
built-in integer division
procedure (i.e., function)

Combinations can span
multiple lines

(spacing doesn’t matter)

Special Forms

Special Forms

7

Special Forms

A combination that is not a call expression is a special form:

7

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

7

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

7

Evaluation:
(1) Evaluate the
predicate expression.
(2) Evaluate either
the consequent or
alternative.

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

7

Evaluation:
(1) Evaluate the
predicate expression.
(2) Evaluate either
the consequent or
alternative.

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

7

Evaluation:
(1) Evaluate the
predicate expression.
(2) Evaluate either
the consequent or
alternative.

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

7

Evaluation:
(1) Evaluate the
predicate expression.
(2) Evaluate either
the consequent or
alternative.

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

The symbol “pi” is bound to 3.14 in the
global frame

7

Evaluation:
(1) Evaluate the
predicate expression.
(2) Evaluate either
the consequent or
alternative.

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

The symbol “pi” is bound to 3.14 in the
global frame

7

Evaluation:
(1) Evaluate the
predicate expression.
(2) Evaluate either
the consequent or
alternative.

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

7

Evaluation:
(1) Evaluate the
predicate expression.
(2) Evaluate either
the consequent or
alternative.

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

A procedure is created and bound to the
symbol “abs”

7

Evaluation:
(1) Evaluate the
predicate expression.
(2) Evaluate either
the consequent or
alternative.

Special Forms

A combination that is not a call expression is a special form:

• If expression: (if <predicate> <consequent> <alternative>)

• And and or: (and <e1> ... <en>), (or <e1> ... <en>)

• Binding symbols: (define <symbol> <expression>)

• New procedures: (define (<symbol> <formal parameters>) <body>)

 > (define pi 3.14)
 > (* pi 2)
 6.28

 > (define (abs x)
 (if (< x 0)
 (- x)
 x))
 > (abs -3)
 3

The symbol “pi” is bound to 3.14 in the
global frame

A procedure is created and bound to the
symbol “abs”

7

Evaluation:
(1) Evaluate the
predicate expression.
(2) Evaluate either
the consequent or
alternative.

(Demo)

Counting Trees

Example: Counting Binary Trees

9

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

9

a long noun phrase

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

9

a long noun phrase

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

9

a long noun phrase

a two word modifier

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

9

a long noun phrase

a two word modifier

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

9

a long noun phrase

a two word modifier

some trees are balanced

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

9

a long noun phrase

a two word modifier

some trees are balanced

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

The number of trees over n leaves with k leaves in the left and n-k in the right is:

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

The number of trees over n leaves with k leaves in the left and n-k in the right is:
(The number of trees with k leaves) * (The number of trees with n-k leaves)

Example: Counting Binary Trees

so many trees exist

9

a long noun phrase

a two word modifier

some trees are balanced

the other trees lean

The structure of a sentence can be described by a tree. Each sub-tree is a constituent.

W X Y Z

(Demo)

The number of trees over n leaves with k leaves in the left and n-k in the right is:
(The number of trees with k leaves) * (The number of trees with n-k leaves)

Lambda Expressions

Lambda Expressions

Lambda expressions evaluate to anonymous procedures.

11

Lambda Expressions

Lambda expressions evaluate to anonymous procedures.

 (lambda (<formal-parameters>) <body>)

11

Lambda Expressions

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)

11

Lambda Expressions

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

11

Lambda Expressions

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

11

Lambda Expressions

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

11

Lambda Expressions

Lambda expressions evaluate to anonymous procedures.

λ
 (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

 (define (plus4 x) (+ x 4))

 (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

 ((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the
add-x-&-y-&-z2 procedure

11

Pairs and Lists

Pairs and Lists

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x
 (1 . 2)

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

13

Pairs and Lists
In the late 1950s, computer scientists used confusing names.
• cons: Two-argument procedure that creates a pair
• car: Procedure that returns the first element of a pair
• cdr: Procedure that returns the second element of a pair
• nil: The empty list

They also used a non-obvious notation for recursive lists.
• A (recursive) list in Scheme is a pair in which the second element is nil or a Scheme list.
• Scheme lists are written as space-separated combinations.
• A dotted list has any value for the second element of the last pair; maybe not a list!

 > (define x (cons 1 2))
 > x
 (1 . 2)
 > (car x)
 1
 > (cdr x)
 2
 > (cons 1 (cons 2 (cons 3 (cons 4 nil))))
 (1 2 3 4)

Not a well-formed list!

13

(Demo)

Symbolic Programming

Symbolic Programming

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

No sign of “a” and “b” in the
resulting value

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Symbols are now values

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

Symbols are now values

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > (car '(a b c))

Symbols are now values

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > (car '(a b c))
 a

Symbols are now values

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > (car '(a b c))
 a
 > (cdr '(a b c))

Symbols are now values

15

Symbolic Programming

Symbols normally refer to values; how do we refer to symbols?

 > (define a 1)
 > (define b 2)
 > (list a b)
 (1 2)

Quotation is used to refer to symbols directly in Lisp.

No sign of “a” and “b” in the
resulting value

 > (list 'a 'b)
 (a b)
 > (list 'a b)
 (a 2)

Quotation can also be applied to combinations to form lists.

 > (car '(a b c))
 a
 > (cdr '(a b c))
 (b c)

Symbols are now values

15

Scheme Lists and Quotation

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3) 1 2 3

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)

1 2 3

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))

1 2 3

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))

1 2 3

1 2

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))

1 2 3

1 2 3 4 nil

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)

1 2 3

1 2 3 4 nil

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)

1 2 3

1 2 3 4 nil

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)

1 2 3

1 2 3 4 nil

1 2 3 nil

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)
 (1 2 3)

1 2 3

1 2 3 4 nil

1 2 3 nil

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)
 (1 2 3)

What is the printed result of evaluating this expression?

1 2 3

1 2 3 4 nil

1 2 3 nil

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)
 (1 2 3)

What is the printed result of evaluating this expression?

 > (cdr '((1 2) . (3 4 . (5))))

1 2 3

1 2 3 4 nil

1 2 3 nil

16

Scheme Lists and Quotation

Dots can be used in a quoted list to specify the second element of the final pair.

 > (cdr (cdr '(1 2 . 3)))
 3

However, dots appear in the output only of ill-formed lists.

 > '(1 2 . 3)
 (1 2 . 3)
 > '(1 2 . (3 4))
 (1 2 3 4)
 > '(1 2 3 . nil)
 (1 2 3)

What is the printed result of evaluating this expression?

 > (cdr '((1 2) . (3 4 . (5))))
 (3 4 5)

1 2 3

1 2 3 4 nil

1 2 3 nil

16

Sierpinski's Triangle

(Demo)

