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• Homework 7 due Tuesday 11/5 @ 11:59pm.

• Project 1 composition revisions due Thursday 11/7 @ 11:59pm.

• Midterm 2 is graded.
(And yes, it was very challenging.)
Mean: 30
Solutions will be posted and exams distributed soon.
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Lambda Expressions

Lambda expressions evaluate to anonymous procedures.

λ
  (lambda (<formal-parameters>) <body>)

Two equivalent expressions:

  (define (plus4 x) (+ x 4))

  (define plus4 (lambda (x) (+ x 4)))

An operator can be a call expression too:

  ((lambda (x y z) (+ x y (square z))) 1 2 3)

Evaluates to the 
add-x-&-y-&-z2 procedure

11
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