61A Lecture 22

Friday, October 25

Announcements

*Midterm 2 is on Monday 10/28 7pm-9pm
Topics and locations: http://inst.eecs.berkeley.edu/~cs6la/fal3/exams/midterm2.html

Bring 1 hand-written, 2-sided sheet of notes. Two study guides will be provided.

Emphasis: mutable data, object-oriented programming, recursion, and recursive data

Have an unavoidable conflict? Fill out the conflict form by Friday 10/25 @ 11:59pm!

Review session on Saturday 10/26 from 1pm to 4pm in 1 Pimentel

HKN review session on Sunday 10/27 from 4pm to 7pm to 2050 VLSB

Includes content through Wednesday 10/23 (today is review & examples)

-No lab next Monday, Tuesday, & Wednesday

“Homework 7 is due Tuesday 11/5 @ 11:59pm (Two weeks)

Recursive Lists Can Change

Attribute assignment statements can change first and rest attributes of an Rlist

The rest of a recursive list can contain the recursive list as a sub-list.

>>> s
>>> s.first = 5
) . >>> t = s.rest
Mutable Recursive Lists >>> t.rest = s
>>> s.first
5

= Rlist(1l, Rlist(2, Rlist(3)))

Global frame First
s 1

>>> s.rest.rest.rest.rest.rest.first

Global frame
s

t

—

—

Note: The actual
environment diagram is
much more complicated.

Mutable Recursive Lists Using Functions

The object system is convenient, but it isn't necessary for designing data types!

Recursive Lists as Functions

(Demo)

Pruned Trees

Consider the binary Tree class below, which has no entry attribute.

class Tree(object):
"""A binary tree with no entries."""
def __init__(self, left=None, right=None):
self.left = left
self.right = right
= Tree(None, Tree(Tree(), Tree(None, Tree())))
= Tree(None, Tree())
= Tree(None, Tree(None, Tree()))
= Tree(Tree(), Tree())

Trees

poop
I

Write a function pruned that
takes two Tree arguments tl
and t2 and returns whether t2
is a pruned version of tl. t2
is a pruned version of tl if
all paths from the root of t2
are also valid paths from the
root of tl.

Pruned Tree Examples

a b c d
(a,b) (a,c) (a,d)

pruned ‘ True ‘ True ‘ False

Recursive Idea

pruned(a, d) None

would imply

pruned(a.left, d.left) None

O

None Not None

a
b [d (a,b) (a,c) (a,d)
% (% pruned

Recursive Idea

pruned(a, c)

None

implies None None

pruned(a.right, c.right)

what about c.left?

Recursive Implementation

| % | | |
Recursive call: Both the left and right are pruned, respectively

Base cases: one (or more) of the trees is None

def pruned(tl, t2):
if t2 is None:
return True
elif t1 is None:
return False
else:
return pruned(tl.left, t2.left) and pruned(tl.right, t2.right)

Go Bears!

def oski(bear): Global frame
oski func oski(bear)
def cal(berk):

f1: oski /\fﬂmc Aley) [parent=f2]
nonlocal bear bear | E R func abst..)
i p— . /\
if (bear (berk): == 0: et | func cal(berk) [parent=1]
: Return Value —~ N N
. return (berk+1, berk-1) :
Non-Local Assignment : ! o721 cal fparent=r1l<.-)
bear = lambda ley: berk-ley : > berky 2

return (berk, {cal(berk)) Return Value | *—

return cal(2) © L[5 cal (parent=f1]

oski(abs) berk | 2

Return Value | *—

f4: A [parent=f2]
ley | 2

Return Value | 0

Go Bears!
def oski(bear):
oski func oski(bear)
def cal(berk):
1: oski |~ func Alley) [parent=f2]
—nentocat—bear— bear | |
. . T~
. if bear(berk) == 0: L Wy func cal(berk) [parent=f1]
iabs(2) i Return Value | *~
H i o, return (berk+1, berk-1)
Non-Local Assignment Variants boar ! 72 cal [parent=11]
lambda ley: berk-ley berk | 2 e
return (berk, cal(berk)) Return Value ._\\
return cal(2) 3: cal [parent=f1]
oski(abs) berk | 2
Return valve | —[
fa: A [parent=f2]
ley | 2
Return Value | 0

