
61A Lecture 21

Wednesday, October 23

Announcements

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

•Thursday 5:30-7 in Soda 320

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

•Thursday 5:30-7 in Soda 320

• Midterm 2 is on Monday 10/28 7pm-9pm

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

•Thursday 5:30-7 in Soda 320

• Midterm 2 is on Monday 10/28 7pm-9pm
Topics and locations: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm2.html

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

•Thursday 5:30-7 in Soda 320

• Midterm 2 is on Monday 10/28 7pm-9pm
Topics and locations: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm2.html
Emphasis: mutable data, object-oriented programming, recursion, and recursive data

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

•Thursday 5:30-7 in Soda 320

• Midterm 2 is on Monday 10/28 7pm-9pm
Topics and locations: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm2.html
Emphasis: mutable data, object-oriented programming, recursion, and recursive data
Have an unavoidable conflict? Fill out the conflict form by Friday 10/25 @ 11:59pm!

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

•Thursday 5:30-7 in Soda 320

• Midterm 2 is on Monday 10/28 7pm-9pm
Topics and locations: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm2.html
Emphasis: mutable data, object-oriented programming, recursion, and recursive data
Have an unavoidable conflict? Fill out the conflict form by Friday 10/25 @ 11:59pm!
Review session on Saturday 10/26 from 1pm to 4pm in 1 Pimentel

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

•Thursday 5:30-7 in Soda 320

• Midterm 2 is on Monday 10/28 7pm-9pm
Topics and locations: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm2.html
Emphasis: mutable data, object-oriented programming, recursion, and recursive data
Have an unavoidable conflict? Fill out the conflict form by Friday 10/25 @ 11:59pm!
Review session on Saturday 10/26 from 1pm to 4pm in 1 Pimentel
HKN review session on Sunday 10/27 from 4pm to 7pm to 2050 VLSB

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

•Thursday 5:30-7 in Soda 320

• Midterm 2 is on Monday 10/28 7pm-9pm
Topics and locations: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm2.html
Emphasis: mutable data, object-oriented programming, recursion, and recursive data
Have an unavoidable conflict? Fill out the conflict form by Friday 10/25 @ 11:59pm!
Review session on Saturday 10/26 from 1pm to 4pm in 1 Pimentel
HKN review session on Sunday 10/27 from 4pm to 7pm to 2050 VLSB

• Homework 7 is due Tuesday 11/5 @ 11:59pm (Two weeks)

2

Announcements

• Project 3 is due Thursday 10/24 @ 11:59pm
Extra reader office hours this week:

•Tuesday 6-7:30 in Soda 405

•Wednesday 5:30-7 in Soda 405

•Thursday 5:30-7 in Soda 320

• Midterm 2 is on Monday 10/28 7pm-9pm
Topics and locations: http://inst.eecs.berkeley.edu/~cs61a/fa13/exams/midterm2.html
Emphasis: mutable data, object-oriented programming, recursion, and recursive data
Have an unavoidable conflict? Fill out the conflict form by Friday 10/25 @ 11:59pm!
Review session on Saturday 10/26 from 1pm to 4pm in 1 Pimentel
HKN review session on Sunday 10/27 from 4pm to 7pm to 2050 VLSB

• Homework 7 is due Tuesday 11/5 @ 11:59pm (Two weeks)

• Respond to lecture questions: http://goo.gl/FZKvgm

2

Generic Functions of Multiple Arguments

More Generic Functions

4

More Generic Functions

A function might want to operate on multiple data types

4

More Generic Functions

A function might want to operate on multiple data types

Last time:

4

More Generic Functions

A function might want to operate on multiple data types

Last time:

• Polymorphic functions using message passing

4

More Generic Functions

A function might want to operate on multiple data types

Last time:

• Polymorphic functions using message passing

• Interfaces: collections of messages that have specific behavior conditions

4

More Generic Functions

A function might want to operate on multiple data types

Last time:

• Polymorphic functions using message passing

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

4

More Generic Functions

A function might want to operate on multiple data types

Last time:

• Polymorphic functions using message passing

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

Today:

4

More Generic Functions

A function might want to operate on multiple data types

Last time:

• Polymorphic functions using message passing

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

Today:

• An arithmetic system over related types

4

More Generic Functions

A function might want to operate on multiple data types

Last time:

• Polymorphic functions using message passing

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

Today:

• An arithmetic system over related types

• Type dispatching

4

More Generic Functions

A function might want to operate on multiple data types

Last time:

• Polymorphic functions using message passing

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

Today:

• An arithmetic system over related types

• Type dispatching

• Data-directed programming

4

More Generic Functions

A function might want to operate on multiple data types

Last time:

• Polymorphic functions using message passing

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

Today:

• An arithmetic system over related types

• Type dispatching

• Data-directed programming

• Type coercion

4

More Generic Functions

A function might want to operate on multiple data types

Last time:

• Polymorphic functions using message passing

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

Today:

• An arithmetic system over related types

• Type dispatching

• Data-directed programming

• Type coercion

What's different? Today's generic functions apply to multiple arguments that
 don't share a common interface.

4

Representing Numbers

Rational Numbers

6

Rational Numbers

Rational numbers represented as a numerator and denominator

6

Rational Numbers

Rational numbers represented as a numerator and denominator

 class Rational:

6

Rational Numbers

Rational numbers represented as a numerator and denominator

 class Rational:

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

6

Rational Numbers

Rational numbers represented as a numerator and denominator

 class Rational:

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

Greatest common
divisor

6

Rational Numbers

Rational numbers represented as a numerator and denominator

 class Rational:

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

Greatest common
divisor

6

Rational Numbers

Rational numbers represented as a numerator and denominator

 class Rational:

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

 def add_rational(x, y):
 nx, dx = x.numer, x.denom
 ny, dy = y.numer, y.denom
 return Rational(nx * dy + ny * dx, dx * dy)

Greatest common
divisor

6

Rational Numbers

Rational numbers represented as a numerator and denominator

 class Rational:

 def __init__(self, numer, denom):
 g = gcd(numer, denom)
 self.numer = numer // g
 self.denom = denom // g

 def __repr__(self):
 return 'Rational({0}, {1})'.format(self.numer, self.denom)

 def add_rational(x, y):
 nx, dx = x.numer, x.denom
 ny, dy = y.numer, y.denom
 return Rational(nx * dy + ny * dx, dx * dy)

 def mul_rational(x, y):
 return Rational(x.numer * y.numer, x.denom * y.denom)

Greatest common
divisor

6

Complex Numbers: the Rectangular Representation

7

Complex Numbers: the Rectangular Representation

 class ComplexRI:

 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

 @property
 def angle(self):
 return atan2(self.imag, self.real)

 def __repr__(self):
 return 'ComplexRI({0}, {1})'.format(self.real,
 self.imag)

7

Complex Numbers: the Rectangular Representation

 class ComplexRI:

 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

 @property
 def angle(self):
 return atan2(self.imag, self.real)

 def __repr__(self):
 return 'ComplexRI({0}, {1})'.format(self.real,
 self.imag)

 def add_complex(z1, z2):
 return ComplexRI(z1.real + z2.real,
 z1.imag + z2.imag)

7

Complex Numbers: the Rectangular Representation

 class ComplexRI:

 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

 @property
 def angle(self):
 return atan2(self.imag, self.real)

 def __repr__(self):
 return 'ComplexRI({0}, {1})'.format(self.real,
 self.imag)

 def add_complex(z1, z2):
 return ComplexRI(z1.real + z2.real,
 z1.imag + z2.imag)

Might be either ComplexMA or
ComplexRI instances

7

Special Methods for Arithmetic

Special Methods

9

Special Methods

Adding instances of user-defined classes with __add__.

9

Special Methods

Adding instances of user-defined classes with __add__.

class Rational:

 ...

 def __add__(self, other):
 return add_rational(self, other)

9

Special Methods

Adding instances of user-defined classes with __add__.

class Rational:

 ...

 def __add__(self, other):
 return add_rational(self, other)

>>> Rational(1, 3) + Rational(1, 6)
Rational(1, 2)

9

Special Methods

Adding instances of user-defined classes with __add__.

class Rational:

 ...

 def __add__(self, other):
 return add_rational(self, other)

>>> Rational(1, 3) + Rational(1, 6)
Rational(1, 2)

9

We can also __add__ complex numbers, even with multiple representations. (Demo)

Special Methods

Adding instances of user-defined classes with __add__.

class Rational:

 ...

 def __add__(self, other):
 return add_rational(self, other)

>>> Rational(1, 3) + Rational(1, 6)
Rational(1, 2)

9

We can also __add__ complex numbers, even with multiple representations. (Demo)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html

Type Dispatching

The Independence of Data Types

11

The Independence of Data Types

Data abstraction and class definitions keep types separate

11

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

11

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

add_rational mul_rational

Rational numbers as
numerators & denominators

11

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

add_rational mul_rational

Rational numbers as
numerators & denominators

add_complex mul_complex

Complex numbers as
two-dimensional vectors

11

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

add_rational mul_rational

Rational numbers as
numerators & denominators

add_complex mul_complex

Complex numbers as
two-dimensional vectors

How do we add a complex number and a rational
number together?

11

The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

add_rational mul_rational

Rational numbers as
numerators & denominators

add_complex mul_complex

Complex numbers as
two-dimensional vectors

How do we add a complex number and a rational
number together?

There are many different techniques for doing this!

11

Type Dispatching

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def rational(z):
 return type(z) is Rational

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def rational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def rational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

Converted to a
real number (float)

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def rational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):

Converted to a
real number (float)

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def rational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""

Converted to a
real number (float)

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def rational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if complex(z1) and complex(z2):
 return add_complex(z1, z2)

Converted to a
real number (float)

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def rational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if complex(z1) and complex(z2):
 return add_complex(z1, z2)
 elif complex(z1) and rational(z2):
 return add_complex_and_rational(z1, z2)

Converted to a
real number (float)

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def rational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if complex(z1) and complex(z2):
 return add_complex(z1, z2)
 elif complex(z1) and rational(z2):
 return add_complex_and_rational(z1, z2)
 elif rational(z1) and complex(z2):
 return add_complex_and_rational(z2, z1)

Converted to a
real number (float)

12

Type Dispatching

Define a different function for each possible combination of types for which an
operation (e.g., addition) is valid.

 def complex(z):
 return type(z) in (ComplexRI, ComplexMA)

 def rational(z):
 return type(z) is Rational

 def add_complex_and_rational(z, r):
 return ComplexRI(z.real + r.numer/r.denom, z.imag)

 def add_by_type_dispatching(z1, z2):
 """Add z1 and z2, which may be complex or rational."""
 if complex(z1) and complex(z2):
 return add_complex(z1, z2)
 elif complex(z1) and rational(z2):
 return add_complex_and_rational(z1, z2)
 elif rational(z1) and complex(z2):
 return add_complex_and_rational(z2, z1)
 else:
 add_rational(z1, z2)

Converted to a
real number (float)

12

Tag-Based Type Dispatching

13

Tag-Based Type Dispatching

Idea: Use a dictionary to dispatch on pairs of types.

13

Tag-Based Type Dispatching

Idea: Use a dictionary to dispatch on pairs of types.

 def type_tag(x):
 return type_tags[type(x)]

13

Tag-Based Type Dispatching

Idea: Use a dictionary to dispatch on pairs of types.

 def type_tag(x):
 return type_tags[type(x)]

 type_tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

13

Tag-Based Type Dispatching

Idea: Use a dictionary to dispatch on pairs of types.

 def type_tag(x):
 return type_tags[type(x)]

 type_tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

Declares that ComplexRI
and ComplexMA should be

treated the same

13

Tag-Based Type Dispatching

Idea: Use a dictionary to dispatch on pairs of types.

 def type_tag(x):
 return type_tags[type(x)]

 type_tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

Declares that ComplexRI
and ComplexMA should be

treated the same

13

Tag-Based Type Dispatching

Idea: Use a dictionary to dispatch on pairs of types.

 def type_tag(x):
 return type_tags[type(x)]

 type_tags = {ComplexRI: 'com',
 ComplexMA: 'com',
 Rational: 'rat'}

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

Declares that ComplexRI
and ComplexMA should be

treated the same

13

(Demo)

Type Dispatching Analysis

Type Dispatching Analysis

15

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

15

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to various dictionaries

15

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to various dictionaries

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

15

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to various dictionaries

Question 1: How many cross-type implementations are required for m types and n operations?

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

15

m ·(m � 1) ·n

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to various dictionaries

Question 1: How many cross-type implementations are required for m types and n operations?

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

15

m ·(m � 1) ·n

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to various dictionaries

Question 1: How many cross-type implementations are required for m types and n operations?

 def add(z1, z2):
 types = (type_tag(z1), type_tag(z2))
 return add_implementations[types](z1, z2)

15

Respond: http://goo.gl/FZKvgm

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to various dictionaries

16

Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding
new entries to various dictionaries

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex

16

Data-Directed Programming

Data-Directed Programming

18

Data-Directed Programming

There's nothing addition-specific about add.

18

Data-Directed Programming

There's nothing addition-specific about add.

Idea: One function for all (operator, types) pairs

18

Data-Directed Programming

There's nothing addition-specific about add.

Idea: One function for all (operator, types) pairs

 def apply(operator_name, x, y):
 tags = (type_tag(x), type_tag(y))
 key = (operator_name, tags)
 return apply_implementations[key](x, y)

18

Data-Directed Programming

There's nothing addition-specific about add.

Idea: One function for all (operator, types) pairs

 def apply(operator_name, x, y):
 tags = (type_tag(x), type_tag(y))
 key = (operator_name, tags)
 return apply_implementations[key](x, y)

(Demo)

18

Type Coercion

Coercion

20

Coercion

Idea: Some types can be converted into other types

20

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

20

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):

20

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):
 return ComplexRI(x.numer/x.denom, 0)

20

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):
 return ComplexRI(x.numer/x.denom, 0)

 coercions = {('rat', 'com'): rational_to_complex}

20

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):
 return ComplexRI(x.numer/x.denom, 0)

 coercions = {('rat', 'com'): rational_to_complex}

Question: Can any numeric type be coerced into any other?

20

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):
 return ComplexRI(x.numer/x.denom, 0)

 coercions = {('rat', 'com'): rational_to_complex}

Question: Can any numeric type be coerced into any other?

20

Respond: http://goo.gl/FZKvgm

Coercion

Idea: Some types can be converted into other types

Takes advantage of structure in the type system

 def rational_to_complex(x):
 return ComplexRI(x.numer/x.denom, 0)

 coercions = {('rat', 'com'): rational_to_complex}

Question: Can any numeric type be coerced into any other?

Question: Have we been repeating ourselves with data-directed programming?

20

Respond: http://goo.gl/FZKvgm

Applying Operators with Coercion

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

 assert tx == ty

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

 assert tx == ty

 key = (operator_name, tx)

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

 assert tx == ty

 key = (operator_name, tx)

 return coerce_apply_implementations[key](x, y)

21

Applying Operators with Coercion

1.Attempt to coerce arguments into values of the same type

2.Apply type-specific (not cross-type) operations

 def coerce_apply(operator_name, x, y):

 tx, ty = type_tag(x), type_tag(y)

 if tx != ty:

 if (tx, ty) in coercions:

 tx, x = ty, coercions[(tx, ty)](x)

 elif (ty, tx) in coercions:

 ty, y = tx, coercions[(ty, tx)](y)

 else:

 return 'No coercion possible.'

 assert tx == ty

 key = (operator_name, tx)

 return coerce_apply_implementations[key](x, y) (Demo)
21

Coercion Analysis

22

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary.

22

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary.

Requires that all types can be coerced into a common type.

22

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary.

Requires that all types can be coerced into a common type.

More sharing: All operators use the same coercion scheme.

22

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary.

Requires that all types can be coerced into a common type.

More sharing: All operators use the same coercion scheme.

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

22

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary.

Requires that all types can be coerced into a common type.

More sharing: All operators use the same coercion scheme.

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational

Rational Complex

22

Coercion Analysis

Minimal violation of abstraction barriers: we define cross-type coercion as necessary.

Requires that all types can be coerced into a common type.

More sharing: All operators use the same coercion scheme.

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational

Rational Complex

Type Add Multiply
Complex

Rational

22

