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More Generic Functions

A function might want to operate on multiple data types

Last time: 

• Polymorphic functions using message passing

• Interfaces: collections of messages that have specific behavior conditions

• Two interchangeable implementations of complex numbers

Today:

• An arithmetic system over related types

• Type dispatching

• Data-directed programming

• Type coercion

What's different? Today's generic functions apply to multiple arguments that
                  don't share a common interface.
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            g = gcd(numer, denom)
            self.numer = numer // g
            self.denom = denom // g

        def __repr__(self):
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    def add_rational(x, y):
        nx, dx = x.numer, x.denom
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        return Rational(nx * dy + ny * dx, dx * dy)

    def mul_rational(x, y):
        return Rational(x.numer * y.numer, x.denom * y.denom)
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        def angle(self):
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        def __repr__(self):
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                                                self.imag)

   def add_complex(z1, z2):
        return ComplexRI(z1.real + z2.real, 
                         z1.imag + z2.imag)

Might be either ComplexMA or 
ComplexRI instances
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    ...
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We can also __add__ complex numbers, even with multiple representations.  (Demo)

http://docs.python.org/py3k/reference/datamodel.html#special-method-names

http://getpython3.com/diveintopython3/special-method-names.html
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The Independence of Data Types

Data abstraction and class definitions keep types separate

Some operations need to cross type boundaries

add_rational  mul_rational

Rational numbers as 
numerators & denominators

add_complex  mul_complex

Complex numbers as
two-dimensional vectors

How do we add a complex number and a rational 
number together?

There are many different techniques for doing this!
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operation (e.g., addition) is valid.

    def complex(z):
        return type(z) in (ComplexRI, ComplexMA)

    def rational(z):
        return type(z) is Rational

    def add_complex_and_rational(z, r):
        return ComplexRI(z.real + r.numer/r.denom, z.imag)

    def add_by_type_dispatching(z1, z2):
        """Add z1 and z2, which may be complex or rational."""
        if complex(z1) and complex(z2):
            return add_complex(z1, z2)
        elif complex(z1) and rational(z2):
            return add_complex_and_rational(z1, z2)
        elif rational(z1) and complex(z2):
            return add_complex_and_rational(z2, z1)
        else:
            add_rational(z1, z2)

Converted to a
real number (float)
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Type Dispatching Analysis

Minimal violation of abstraction barriers: we define cross-type functions as necessary.

Extensible: Any new numeric type can "install" itself into the existing system by adding 
new entries to various dictionaries

Arg 1 Arg 2 Add Multiply

Complex Complex

Rational Rational

Complex Rational

Rational Complex
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There's nothing addition-specific about add.

Idea: One function for all (operator, types) pairs

    def apply(operator_name, x, y):
        tags = (type_tag(x), type_tag(y))
        key = (operator_name, tags)
        return apply_implementations[key](x, y)
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2.Apply type-specific (not cross-type) operations

    def coerce_apply(operator_name, x, y):

        tx, ty = type_tag(x), type_tag(y)

        if tx != ty:

            if (tx, ty) in coercions:

                tx, x = ty, coercions[(tx, ty)](x)

            elif (ty, tx) in coercions:

                ty, y = tx, coercions[(ty, tx)](y)

            else:

                return 'No coercion possible.'

        assert tx == ty

        key = (operator_name, tx)

        return coerce_apply_implementations[key](x, y) (Demo)
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Requires that all types can be coerced into a common type.

More sharing: All operators use the same coercion scheme.

Arg 1 Arg 2 Add Multiply
Complex Complex
Rational Rational
Complex Rational
Rational Complex

From To Coerce
Complex Rational

Rational Complex

Type Add Multiply
Complex

Rational
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