
61A Lecture 20

Monday, October 21

Announcements

• Homework 6 is due Tuesday 10/22 @ 11:59pm

Includes a mid-semester survey about the course so far

• Project 3 is due Thursday 10/24 @ 11:59pm

Extra reader office hours this week:
•Tuesday 6-7:30 in Soda 405
•Wednesday 5:30-7 in Soda 405
•Thursday 5:30-7 in Soda 320

• Midterm 2 is on Monday 10/28 7pm-9pm

Topics and locations are posted on the course website

Have an unavoidable conflict? Fill out the conflict form by Friday 10/25 @ 11:59pm

Review session on Saturday 10/26 1pm-4pm in 1 Pimentel

Student-organized "engineering bowl" about midterm 2 on Tuesday 4pm-6pm in 240 Bechtel

• Homework 7 is due Tuesday 11/5 @ 11:59pm (Two weeks)

2

Generic Functions

Generic Functions

An abstraction might have more than one representation.

• Python has many sequence types: tuples, ranges, lists, etc.

An abstract data type might have multiple implementations.

• Some representations are better suited to some problems.

A function might want to operate on multiple data types.

Today's Topics:

• Generic functions

• String representations of objects

• Property methods

• Multiple representations of data using the Python object system

4

String Representations

String Representations

An object value should behave like the kind of data it is meant to represent;

For instance, by producing a string representation of itself.

Strings are important: they represent language and programs.

In Python, all objects produce two string representations:

• The "str" is legible to humans.

• The "repr" is legible to the Python interpreter.

When the "str" and "repr" strings are the same, that’s a sign that a programming
language is legible to humans!

6

The "repr" String for an Object

The result of calling repr on the value of an expression is what Python prints in an
interactive session.

>>> 12e12
12000000000000.0
>>> print(repr(12e12))
12000000000000.0

Some objects don't have a simple Python-readable string.

repr(object) -> string

Return the canonical string representation of the object.
For most object types, eval(repr(object)) == object.

The repr function returns a Python expression (as a string) that evaluates to an equal
object.

>>> repr(min)
'<built-in function min>'

7

The "str" String for an Object

Human interpretable strings are useful as well:

>>> import datetime

>>> today = datetime.date(2013, 10, 21)

>>> repr(today)

'datetime.date(2013, 10, 21)'

>>> str(today)

'2013-10-21'

(Demo)

The result of calling str on the value of an expression is what Python prints using the
print function.

8

Implementing str and repr

Polymorphic Functions

Polymorphic function: A function that can be applied to many (poly) different forms
(morph) of data

str and repr are both polymorphic; they apply to anything.

repr invokes a zero-argument method __repr__ on its argument.

str invokes a zero-argument method __str__ on its argument.

>>> today.__repr__()

'datetime.date(2012, 10, 8)'

>>> today.__str__()

'2012-10-08'

10

Implementing repr and str

The behavior of repr is slightly more complicated than invoking __repr__ on its argument:

• An instance attribute called __repr__ is ignored. (Demo)

• Question: How would we implement this behavior?

The behavior of str:

• An instance attribute called __str__ is ignored.

• If no __str__ attribute is found, uses repr string. (Demo)

• Question: How would we implement this behavior?

• str is a class, not a function

11

Interfaces

Interfaces

Message passing: Objects interact by passing messages, such as attribute names.

Message passing allows different data types to respond to the same message.

A shared message that elicits similar behavior from different object classes is a
powerful method of abstraction.

An interface is a set of shared messages, along with a specification of what they mean.

Examples:

Classes that implement __repr__ and __str__ methods that return Python and human
readable strings thereby implement an interface for producing Python string
representations.

Classes that implement __len__ and __getitem__ are sequences.

13

Property Methods

Property Methods

Often, we want the value of instance attributes to be linked.

 >>> f = Rational(3, 5)
 >>> f.float_value
 0.6
 >>> f.numer = 4
 >>> f.float_value
 0.8
 >>> f.denom -= 3
 >>> f.float_value
 2.0

The @property decorator on a method designates that it will be called whenever it is
looked up on an instance.

(Demo)

It allows zero-argument methods to be called without an explicit call expression.

15

Example: Complex Numbers

Multiple Representations of Abstract Data

Rectangular and polar representations for complex numbers

Most operations don't care about the representation.

Some mathematical operations are easier on one than the other.

(1, 1) (
�

2,
�

4
)

17

Arithmetic Abstraction Barriers

add_complex mul_complex

real imag magnitude angle

Complex numbers as whole data values

Complex numbers as two-dimensional vectors

Rectangular
representation

Polar
representation

18

Implementing Complex Numbers

An Interface for Complex Numbers

All complex numbers should have real and imag components.

All complex numbers should have a magnitude and angle.

(Demo)

Using this interface, we can implement complex arithmetic:

 def add_complex(z1, z2):
 return ComplexRI(z1.real + z2.real,
 z1.imag + z2.imag)

 def mul_complex(z1, z2):
 return ComplexMA(z1.magnitude * z2.magnitude,
 z1.angle + z2.angle)

20

The Rectangular Representation

 class ComplexRI:

 def __init__(self, real, imag):
 self.real = real
 self.imag = imag

 @property
 def magnitude(self):
 return (self.real ** 2 + self.imag ** 2) ** 0.5

 @property
 def angle(self):
 return atan2(self.imag, self.real)

 def __repr__(self):
 return 'ComplexRI({0}, {1})'.format(self.real,
 self.imag)

math.atan2(y,x): Angle between
x-axis and the point (x,y)

Property decorator: "Call this
function on attribute look-up"

21

The Polar Representation

 class ComplexMA:

 def __init__(self, magnitude, angle):
 self.magnitude = magnitude
 self.angle = angle

 @property
 def real(self):
 return self.magnitude * cos(self.angle)

 @property
 def imag(self):
 return self.magnitude * sin(self.angle)

 def __repr__(self):
 return 'ComplexMA({0}, {1})'.format(self.magnitude,
 self.angle)

22

Using Complex Numbers

Either type of complex number can be passed as either argument to add_complex or
mul_complex:

>>> from math import pi

>>> add_complex(ComplexRI(1, 2), ComplexMA(2, pi/2))

ComplexRI(1.0000000000000002, 4.0)

>>> mul_complex(ComplexRI(0, 1), ComplexRI(0, 1))

ComplexMA(1.0, 3.141592653589793)

>>> def add_complex(z1, z2):
 return ComplexRI(z1.real + z2.real,
 z1.imag + z2.imag)

>>> def mul_complex(z1, z2):
 return ComplexMA(z1.magnitude * z2.magnitude,
 z1.angle + z2.angle)

23

