Homework 6 is due Tuesday 10/22 @ 11:59pm

- Includes a mid-semester survey about the course so far

Project 3 is due Thursday 10/24 @ 11:59pm
Midterm 2 is on Monday 10/28 7pm-9pm
Guerrilla section 3 this weekend
Object-oriented programming, recursion, and recursive data structures $2 \mathrm{pm}-5 \mathrm{pm}$ on Saturday and $10 \mathrm{am}-1 \mathrm{pm}$ on Sunday
Please let us know you are coming by filling out the Piazza poll

Comparing orders of growth (n is the problem size)

$\Theta\left(b^{n}\right)$	Exponential growth! Recursive fib takes
	$\Theta\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$
$\Theta\left(n^{6}\right) \cdots \cdots \cdots \cdots$	Incrementing the problem scales $R(n)$ by a factor.
$\Theta\left(n^{2}\right)$	Quadratic growth. E.g., operations on all pairs. Incrementing n increases $R(n)$ by the problem size
$\Theta(n)$	Linear growth. Resources scale with the problem.
$\Theta(\sqrt{n}) \ldots \ldots \ldots \ldots$	
$\Theta(\log n)$	Logarithmic growth. These processes scale well.
	Doubling the problem only increments $R(n)$.
$\Theta(1)$	onstant. The problem size doesn't matter.

Sets

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries
$\ggg \gg=\{3,2,1,4,4\}$
$\begin{array}{ll}\ggg & 5 \\ \{1,2,3,4\}\end{array}$
>> 3 in s
\ggg len(s)
\ggg s.union ($\{1,5\}$)
$\begin{array}{ll}\{1,2,3,4,5\} \\ \ggg & \text { s.intersection }(\{6,5,4,3\})\end{array}$
$\left.\begin{array}{l}\ggg \\ \{3,4\}\end{array}\right)$ intersection(\{6, 5, 4, 3\}

Implementing Sets

What we should be able to do with a set:
-Membership testing: Is a value an element of a set?
Union: Return a set with all elements in set1 or set2
Intersection: Return a set with any elements in set1 and set2
Adjunction: Return a set with all elements in s and a value v

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items.

```
def empty(s):
        return s is Rlist.empty
def set_contains(s, v):
    if empty(s):
        return False
        elif s.first == v:
        return True
        else:
            return set_contains(s.rest, v)
```

(Demo)

Sets as Unordered Sequences

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

 def intersect_set(set1, set2):
 in_set2 = lambda v: set_contains(set2, v)
 return filter rlist(set 1 , in set2)
 def union_set(set1, set2):
not_in_set2 $=$ lambda v : not set_contains(set2, v$)$
set $\overline{1} _$not_set2 $=$filter_rlist(seth1, not_in_set2)
return extend_rlist(set1_not_set2, set 2)

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest

```
def set_contains(s, v):
    if empty(s) or s.first > v:
        return False
        lif s.first == v:
        return True
    else:
        return set_contains(s.rest, v)
```

 Order of growth? \(\Theta(n)\)
 Set Intersection Using Ordered Sequences
This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
        f e1 == e2:
            return Rlist(e1, intersect_set(set1.rest, set2.rest))
            lif el < e2:
            return intersect_set(set1.rest, set2)
        elif e2 < e1:
            return intersect_set(set1, set2.rest)
```

 (Demo)
 Order of growth? \(\Theta(n)\)

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is: - Larger than all entries in its left branch and - Smaller than all entries in its right branch

Membership in Tree Sets

Set membership traverses the tree
-The element is either in the left or right sub-branch

- By focusing on one branch, we reduce the set by about half
def set_contains(s, v):
if s is None:
return False
elif s.entry $==$
v :
elif s.entry $==$
return True
elif s.entry < v:
return set_contains(s.right, v)
elif s.entry >-v:
return set contains(s.left, v)

Adjoining to a Tree Set

What Did I Leave Out?
Sets as ordered sequences:

- Adjoining an element to a set
-Union of two sets
Sets as binary trees:
- Intersection of two sets
-Union of two sets
- Balancing a tree

That's all on homework 7!

