61A Lecture 19

Friday, October 18

Announcements

Announcements

-Homework 6 is due Tuesday 10/22 @ 11:59pm

Announcements

-Homework 6 is due Tuesday 10/22 @ 11:59pm

- Includes a mid-semester survey about the course so far

Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm
- Includes a mid-semester survey about the course so far
- Project 3 is due Thursday 10/24 @ 11:59pm

Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm
- Includes a mid-semester survey about the course so far
- Project 3 is due Thursday 10/24 @ 11:59pm
-Midterm 2 is on Monday 10/28 7pm-9pm

Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm
- Includes a mid-semester survey about the course so far
- Project 3 is due Thursday 10/24 @ 11:59pm
-Midterm 2 is on Monday 10/28 7pm-9pm
- Guerrilla section 3 this weekend

Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm
- Includes a mid-semester survey about the course so far
- Project 3 is due Thursday 10/24 @ 11:59pm
-Midterm 2 is on Monday 10/28 7pm-9pm
- Guerrilla section 3 this weekend
"Object-oriented programming, recursion, and recursive data structures

Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm
"Includes a mid-semester survey about the course so far
- Project 3 is due Thursday 10/24 @ 11:59pm
-Midterm 2 is on Monday 10/28 7pm-9pm
- Guerrilla section 3 this weekend
-Object-oriented programming, recursion, and recursive data structures
- $2 \mathrm{pm}-5 \mathrm{pm}$ on Saturday and 10am-1pm on Sunday

Announcements

- Homework 6 is due Tuesday 10/22 @ 11:59pm
"Includes a mid-semester survey about the course so far
- Project 3 is due Thursday 10/24 @ 11:59pm
-Midterm 2 is on Monday 10/28 7pm-9pm
- Guerrilla section 3 this weekend
-Object-oriented programming, recursion, and recursive data structures
- 2 pm-5pm on Saturday and 10am-1pm on Sunday
"Please let us know you are coming by filling out the Piazza poll

Comparing Orders of Growth

Comparing orders of growth (n is the problem size)

Comparing orders of growth (n is the problem size)

$$
\Theta\left(b^{n}\right)
$$

Comparing orders of growth (n is the problem size)

$$
\begin{aligned}
\Theta\left(b^{n}\right) & \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828
\end{aligned}
$$

Comparing orders of growth (n is the problem size)

$$
\begin{aligned}
\Theta\left(b^{n}\right) & \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828
\end{aligned}
$$

Incrementing the problem scales $R(n)$ by a factor.

Comparing orders of growth (n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) \quad \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor. }
\end{array}
$$

Comparing orders of growth (n is the problem size)

$$
\begin{aligned}
& \Theta\left(b^{n}\right) \quad \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } R(\mathrm{n}) \text { by a factor. } \\
& \Theta\left(n^{2}\right) \quad \text { Quadratic growth. E.g., operations on all pairs. }
\end{aligned}
$$

Comparing orders of growth (n is the problem size)

$$
\begin{aligned}
& \Theta\left(b^{n}\right) \quad \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor. } \\
& \Theta\left(n^{2}\right) \quad \text { Quadratic growth. E.g., operations on all pairs. } \\
& \text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} .
\end{aligned}
$$

Comparing orders of growth (n is the problem size)

$$
\begin{aligned}
& \Theta\left(b^{n}\right) \quad \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor. } \\
& \Theta\left(n^{2}\right) \quad \text { Quadratic growth. E.g., operations on all pairs. } \\
& \text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} .
\end{aligned}
$$

$$
\Theta(n)
$$

Comparing orders of growth (n is the problem size)

$$
\begin{aligned}
& \Theta\left(b^{n}\right) \quad \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor. } \\
& \Theta\left(n^{2}\right) \quad \text { Quadratic growth. E.g., operations on all pairs. } \\
& \text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} . \\
& \Theta(n) \quad \text { Linear growth. Resources scale with the problem. }
\end{aligned}
$$

Comparing orders of growth (n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) & \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } R(n) \text { by a factor. } \\
\Theta\left(n^{2}\right) \quad \text { Quadratic growth. E.g., operations on all pairs. } \\
& \text { Incrementing } n \text { increases } R(n) \text { by the problem size } n . \\
\Theta(n) \quad \text { Linear growth. Resources scale with the problem. } \\
\Theta(\log n)
\end{array}
$$

Comparing orders of growth (n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) & \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor. } \\
\Theta\left(n^{2}\right) \quad \text { Quadratic growth. E.g., operations on all pairs. } \\
& \text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} . \\
\Theta(n) \quad \text { Linear growth. Resources scale with the problem. } \\
\Theta(\log n) \quad \text { Logarithmic growth. These processes scale well. }
\end{array}
$$

Comparing orders of growth (n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) \quad & \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor. } \\
\Theta\left(n^{2}\right) \quad \text { Quadratic growth. E.g., operations on all pairs. } \\
& \text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} . \\
\Theta(n) \quad \text { Linear growth. Resources scale with the problem. } \\
\Theta(\log n) \quad \text { Logarithmic growth. These processes scale well. } \\
& \text { Doubling the problem only increments } \mathrm{R}(\mathrm{n}) .
\end{array}
$$

Comparing orders of growth (n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) \quad & \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor. } \\
\Theta\left(n^{2}\right) \quad \text { Quadratic growth. E.g., operations on all pairs. } \\
& \text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} . \\
\Theta(\log n) \quad \text { Linear growth. Resources scale with the problem. } \\
\Theta(1)
\end{array}
$$

Comparing orders of growth (n is the problem size)

$$
\begin{array}{ll}
\Theta\left(b^{n}\right) \quad & \text { Exponential growth! Recursive fib takes } \\
& \Theta\left(\phi^{n}\right) \text { steps, where } \phi=\frac{1+\sqrt{5}}{2} \approx 1.61828 \\
& \text { Incrementing the problem scales } \mathrm{R}(\mathrm{n}) \text { by a factor. } \\
\Theta\left(n^{2}\right) \quad \text { Quadratic growth. E.g., operations on all pairs. } \\
& \text { Incrementing } \mathrm{n} \text { increases } \mathrm{R}(\mathrm{n}) \text { by the problem size } \mathrm{n} . \\
\Theta(n) \quad \text { Linear growth. Resources scale with the problem. } \\
\Theta(\log n) \quad \text { Logarithmic growth. These processes scale well. } \\
\Theta(1) \quad \text { Doubling the problem only increments } \mathrm{R}(\mathrm{n}) .
\end{array}
$$

Comparing orders of growth (n is the problem size)

Comparing orders of growth (n is the problem size)

$\Theta\left(b^{n}\right)$	Exponential growth! Recursive fib takes $\Theta\left(n^{6}\right) \ldots\left(\phi^{n}\right)$ steps, where $\phi=\frac{1+\sqrt{5}}{2} \approx 1.61828$ $\Theta\left(n^{2}\right)$
$\Theta(n)$	Incrementing the problem scales $\mathrm{R}(\mathrm{n})$ by a factor. Quadratic growth. E.g., operations on all pairs. Incrementing n increases $\mathrm{R}(\mathrm{n})$ by the problem size n.
$\Theta(\log n)$	Logarithmic growth. These processes scale well.
$\Theta(1)$	Doubling the problem only increments $\mathrm{R}(\mathrm{n})$.

Comparing orders of growth (n is the problem size)

Sets

Sets

Sets

One more built-in Python container type

Sets

One more built-in Python container type - Set literals are enclosed in braces

Sets

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction

Sets

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

Sets

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
\>> S S 3, 4}
```


Sets

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}
>>> 3 in s
True
```


Sets

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}
>>> 3 in s
True
>>> len(s)
4
```


Sets

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>>> s = {3, 2, 1, 4, 4}
>>> s
{1, 2, 3, 4}
>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
```


Sets

One more built-in Python container type

- Set literals are enclosed in braces
- Duplicate elements are removed on construction
- Sets are unordered, just like dictionary entries

```
>> s}={3,2,1,4,4
>>> s
{1, 2, 3, 4}
>>> 3 in s
True
>>> len(s)
4
>>> s.union({1, 5})
{1, 2, 3, 4, 5}
>>> s.intersection({6, 5, 4, 3})
{3, 4}
```

Implementing Sets

Implementing Sets

Implementing Sets

What we should be able to do with a set:

Implementing Sets

What we should be able to do with a set:
-Membership testing: Is a value an element of a set?

Implementing Sets

What we should be able to do with a set:

- Membership testing: Is a value an element of a set?
-Union: Return a set with all elements in set1 or set2

Implementing Sets

What we should be able to do with a set:
-Membership testing: Is a value an element of a set?
-Union: Return a set with all elements in set1 or set2

Union

Implementing Sets

What we should be able to do with a set:
-Membership testing: Is a value an element of a set?
-Union: Return a set with all elements in set1 or set2

- Intersection: Return a set with any elements in set1 and set2

Union

Implementing Sets

What we should be able to do with a set:

- Membership testing: Is a value an element of a set?
-Union: Return a set with all elements in set1 or set2
- Intersection: Return a set with any elements in set1 and set2

Implementing Sets

What we should be able to do with a set:

- Membership testing: Is a value an element of a set?
-Union: Return a set with all elements in set1 or set2
- Intersection: Return a set with any elements in set1 and set2
- Adjunction: Return a set with all elements in s and a value v

Implementing Sets

What we should be able to do with a set:

- Membership testing: Is a value an element of a set?
-Union: Return a set with all elements in set1 or set2
- Intersection: Return a set with any elements in set1 and set2
- Adjunction: Return a set with all elements in s and a value v

Intersection

Adjunction

Sets as Unordered Sequences

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items.

Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items.

```
def empty(s):
    return s is Rlist.empty
```


Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items.

```
def empty(s):
    return s is Rlist.empty
def set_contains(s, v):
```


Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items.

```
def empty(s):
    return s is Rlist.empty
def set_contains(s, v):
    if empty(s):
            return False
```


Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items.

```
def empty(s):
    return s is Rlist.empty
def set_contains(s, v):
    if empty(s):
            return False
    elif s.first == v:
            return True
```


Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items.

```
def empty(s):
    return s is Rlist.empty
def set_contains(s, v):
    if empty(s):
            return False
    elif s.first == v:
        return True
    else:
```


Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items.

```
def empty(s):
    return s is Rlist.empty
def set_contains(s, v):
    if empty(s):
            return False
    elif s.first == v:
            return True
    else:
        return set_contains(s.rest, v)
```


Sets as Unordered Sequences

Proposal 1: A set is represented by a recursive list that contains no duplicate items.

```
def empty(s):
    return s is Rlist.empty
def set_contains(s, v):
    if empty(s):
            return False
    elif s.first == v:
            return True
    else:
            return set_contains(s.rest, v)
```


Review: Order of Growth

Review: Order of Growth

For a set operation that takes "linear" time, we say that

Review: Order of Growth

For a set operation that takes "linear" time, we say that
\boldsymbol{n} : size of the set

Review: Order of Growth

For a set operation that takes "linear" time, we say that
\boldsymbol{n} : size of the set
$\boldsymbol{R}(\boldsymbol{n})$: number of steps required to perform the operation

Review: Order of Growth

For a set operation that takes "linear" time, we say that
\boldsymbol{n} : size of the set
$\boldsymbol{R}(\boldsymbol{n})$: number of steps required to perform the operation

$$
R(n)=\Theta(n)
$$

Review: Order of Growth

For a set operation that takes "linear" time, we say that
\boldsymbol{n} : size of the set
$\boldsymbol{R}(\boldsymbol{n})$: number of steps required to perform the operation

$$
R(n)=\Theta(n) \quad \text { An example } f(\mathrm{n})
$$

Review: Order of Growth

For a set operation that takes "linear" time, we say that
\boldsymbol{n} : size of the set
$\boldsymbol{R}(\boldsymbol{n})$: number of steps required to perform the operation

$$
R(n)=\Theta(n) \quad \text { An example } \mathrm{f}(\mathrm{n})
$$

which means that there are positive constants k_{1} and k_{2} such that

Review: Order of Growth

For a set operation that takes "linear" time, we say that
\boldsymbol{n} : size of the set
$\boldsymbol{R}(\boldsymbol{n})$: number of steps required to perform the operation

$$
R(n)=\Theta(n) \quad \text { An example } \mathrm{f}(\mathrm{n})
$$

which means that there are positive constants k_{1} and k_{2} such that

$$
k_{1} \cdot n \leq R(n) \leq k_{2} \cdot n
$$

Review: Order of Growth

For a set operation that takes "linear" time, we say that
\boldsymbol{n} : size of the set
$\boldsymbol{R}(\boldsymbol{n})$: number of steps required to perform the operation

$$
R(n)=\Theta(n) \quad \text { An example } \mathrm{f}(\mathrm{n})
$$

which means that there are positive constants k_{1} and k_{2} such that

$$
k_{1} \cdot n \leq R(n) \leq k_{2} \cdot n
$$

for sufficiently large values of \boldsymbol{n}.

Sets as Unordered Sequences

Sets as Unordered Sequences

def adjoin_set(s, v):

Sets as Unordered Sequences

```
def adjoin_set(s, v):
    if set_contains(s, v):
```


Sets as Unordered Sequences

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
```


Sets as Unordered Sequences

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
```


Sets as Unordered Sequences

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```


Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```


Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```


Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```


Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

def intersect_set(set1, set2):

Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

def intersect_set(set1, set2):
in_set2 = lambda v: set_contains(set2, v)

Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

def intersect_set(set1, set2):
in_set2 = lambda v: set_contains(set2, v)
return filter_rlist(set1, in_set2)

Sets as Unordered Sequences

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

Time order of growth

The size of the set

```
def intersect_set(set1, set2):
```

def intersect_set(set1, set2):
in_set2 = lambda v: set_contains(set2, v)
in_set2 = lambda v: set_contains(set2, v)
return filter_rlist(set1, in_set2)

```
    return filter_rlist(set1, in_set2)
```


Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

```
def intersect_set(set1, set2):
    in_set2 = lambda v: set_contains(set2, v)
    return filter_rlist(set1, in_set2)
```

 \(\Theta(n)\)
 The size of the set

Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

def intersect_set(set1, set2):
in_set2 = lambda v: set_contains(set2, v)
return filter_rlist(set1, in_set2)
$\Theta(n)$
The size of the set

```
\Theta(n' 2
Assume sets are
    the same size
```

def union_set(set1, set2):

Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

def intersect_set(set1, set2):
in_set2 = lambda v: set_contains(set2, v)
return filter_rlist(set1, in_set2)


```
\Theta(n' 
        ~
    Assume sets are
    the same size
```

```
def union_set(set1, set2):
    not_in_set2 = lambda v: not set_contains(set2, v)
```


Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

def intersect_set(set1, set2):
in_set2 = lambda v: set_contains(set2, v)
return filter_rlist(set1, in_set2)


```
\Theta(n' 
        ~
    Assume sets are
    the same size
```

```
def union_set(set1, set2):
    not_in_set2 = lambda v: not set_contains(set2, v)
    set1_not_set2 = filter_rlist(set1, not_in_set2)
```


Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

def intersect_set(set1, set2):
in_set2 = lambda v: set_contains(set2, v)
return filter_rlist(set1, in_set2)


```
\Theta(n' 
        ~
Assume sets are
    the same size
```

```
def union_set(set1, set2):
    not_in_set2 = lambda v: not set_contains(set2, v)
    set1_not_set2 = filter_rlist(set1, not_in_set2)
    return extend_rlist(set1_not_set2, set2)
```


Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

def intersect_set(set1, set2):
in_set2 = lambda v: set_contains(set2, v)
return filter_rlist(set1, in_set2)


```
\Theta(n' 
Assume sets are
    the same size
```

```
def union_set(set1, set2):
    not_in_set2 = lambda v: not set_contains(set2, v)
    set1_not_set2 = filter_rlist(set1, not_in_set2)
    return extend_rlist(set1_not_set2, set2)
```

$\Theta\left(n^{2}\right)$

Sets as Unordered Sequences

Time order of growth

```
def adjoin_set(s, v):
    if set_contains(s, v):
        return s
    else:
        return Rlist(v, s)
```

def intersect_set(set1, set2):
in_set2 = lambda v: set_contains(set2, v)
return filter_rlist(set1, in_set2)


```
\Theta(n' 
Assume sets are
    the same size
```

def union_set(set1, set2):
not_in_set2 = lambda v: not set_contains(set2, v)
$\Theta\left(n^{2}\right)$
set1_not_set2 = filter_rlist(set1, not_in_set2)
return extend_rlist(set1_not_set2, set2)
(Demo)

Sets as Ordered Sequences

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest

```
def set_contains(s, v):
```


Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest

```
def set_contains(s, v):
    if empty(s) or s.first > v:
            return False
```


Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest

```
def set_contains(s, v):
    if empty(s) or s.first > v:
            return False
    elif s.first == v:
        return True
```


Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest

```
def set_contains(s, v):
    if empty(s) or s.first > v:
            return False
    elif s.first == v:
        return True
    else:
```


Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest

```
def set_contains(s, v):
    if empty(s) or s.first > v:
            return False
    elif s.first == v:
        return True
    else:
            return set_contains(s.rest, v)
```


Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest

```
def set_contains(s, v):
    if empty(s) or s.first > v:
            return False
    elif s.first == v:
        return True
    else:
            return set_contains(s.rest, v)
```

Order of growth?

Sets as Ordered Sequences

Proposal 2: A set is represented by a recursive list with unique elements ordered from least to greatest

```
def set_contains(s, v):
    if empty(s) or s.first > v:
            return False
    elif s.first == v:
        return True
    else:
            return set_contains(s.rest, v)
```

 Order of growth? \(\Theta(n)\)

Set Intersection Using Ordered Sequences

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
    def intersect_set(set1, set2):
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
    def intersect_set(set1, set2):
        if empty(set1) or empty(set2):
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    else:
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
            return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
        if e1 == e2:
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
            return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
        if e1 == e2:
            return Rlist(e1, intersect_set(set1.rest, set2.rest))
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
        if e1 == e2:
            return Rlist(e1, intersect_set(set1.rest, set2.rest))
        elif e1 < e2:
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
        if e1 == e2:
            return Rlist(e1, intersect_set(set1.rest, set2.rest))
        elif e1 < e2:
            return intersect_set(set1.rest, set2)
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
        if e1 == e2:
            return Rlist(e1, intersect_set(set1.rest, set2.rest))
        elif e1 < e2:
            return intersect_set(set1.rest, set2)
        elif e2 < e1:
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
        if e1 == e2:
            return Rlist(e1, intersect_set(set1.rest, set2.rest))
        elif e1 < e2:
            return intersect_set(set1.rest, set2)
        elif e2 < e1:
            return intersect_set(set1, set2.rest)
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
        if e1 == e2:
            return Rlist(e1, intersect_set(set1.rest, set2.rest))
        elif e1 < e2:
            return intersect_set(set1.rest, set2)
        elif e2 < el:
            return intersect_set(set1, set2.rest)
                (Demo)
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
        if e1 == e2:
            return Rlist(e1, intersect_set(set1.rest, set2.rest))
        elif e1 < e2:
            return intersect_set(set1.rest, set2)
        elif e2 < e1:
            return intersect_set(set1, set2.rest)
                    (Demo)
                    Order of growth?
```


Set Intersection Using Ordered Sequences

This algorithm assumes that elements are in order.

```
def intersect_set(set1, set2):
    if empty(set1) or empty(set2):
        return Rlist.empty
    else:
        e1, e2 = set1.first, set2.first
        if e1 == e2:
            return Rlist(e1, intersect_set(set1.rest, set2.rest))
        elif e1 < e2:
            return intersect_set(set1.rest, set2)
        elif e2 < e1:
            return intersect_set(set1, set2.rest)
                    (Demo)
                    Order of growth? }\Theta(n
```


Sets as Binary Search Trees

Tree Sets

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:

- Larger than all entries in its left branch and

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:

- Larger than all entries in its left branch and
- Smaller than all entries in its right branch

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:

- Larger than all entries in its left branch and
- Smaller than all entries in its right branch

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:

- Larger than all entries in its left branch and
- Smaller than all entries in its right branch

11

Tree Sets

Proposal 3: A set is represented as a Tree. Each entry is:

- Larger than all entries in its left branch and
- Smaller than all entries in its right branch

11

Membership in Tree Sets

Membership in Tree Sets

Set membership traverses the tree

Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch

Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
        if s is None:
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
        if s is None:
            return False
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
        if s is None:
        return False
    elif s.entry == v:
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
        if s is None:
        return False
    elif s.entry == v:
        return True
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
        if s is None:
        return False
    elif s.entry == v:
        return True
    elif s.entry < v:
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
        if s is None:
        return False
    elif s.entry == v:
        return True
    elif s.entry < v:
        return set_contains(s.right, v)
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
    if s is None:
        return False
    elif s.entry == v:
        return True
    elif s.entry < v:
        return set_contains(s.right, v)
    elif s.entry > v:
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
    if s is None:
        return False
    elif s.entry == v:
        return True
    elif s.entry < v:
        return set_contains(s.right, v)
    elif s.entry > v:
        return set_contains(s.left, v)
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
    if s is None:
        return False
    elif s.entry == v:
        return True
    elif s.entry < v:
        return set_contains(s.right, v)
    elif s.entry > v:
        return set_contains(s.left, v)
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
        if s is None:
        return False
    elif s.entry == v:
        return True
    elif s.entry < v:
        return set_contains(s.right, v)
    elif s.entry > v:
        return set_contains(s.left, v)
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
```

def set_contains(s, v):

```
```

def set_contains(s, v):
if s is None:
if s is None:
return False
return False
elif s.entry == v:
elif s.entry == v:
return True
return True
elif s.entry < v:
elif s.entry < v:
return set_contains(s.right, v)
return set_contains(s.right, v)
elif s.entry > v:
elif s.entry > v:
return set_contains(s.left, v)

```
```

 return set_contains(s.left, v)
    ```
```



```
If 9 is in the
set, it is in
    this branch
```


Membership in Tree Sets

Set membership traverses the tree

- The element is either in the left or right sub-branch
- By focusing on one branch, we reduce the set by about half

```
def set_contains(s, v):
    if s is None:
        return False
    elif s.entry == v:
        return True
    elif s.entry < v:
        return set_contains(s.right, v)
    elif s.entry > v:
        return set_contains(s.left, v)
```



```
If 9 is in the
set, it is in
    this branch
```

Order of growth?

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Adjoining to a Tree Set

Left!
Right!
\square

None

None None

Stop!

Adjoining to a Tree Set

8
8
None

Stop!

More Set Operations

What Did I Leave Out?

What Did I Leave Out?

Sets as ordered sequences:

What Did I Leave Out?

Sets as ordered sequences:

- Adjoining an element to a set

What Did I Leave Out?

Sets as ordered sequences:

- Adjoining an element to a set
- Union of two sets

What Did I Leave Out?

Sets as ordered sequences:

- Adjoining an element to a set
- Union of two sets

Sets as binary trees:

What Did I Leave Out?

Sets as ordered sequences:

- Adjoining an element to a set
- Union of two sets

Sets as binary trees:

- Intersection of two sets

What Did I Leave Out?

Sets as ordered sequences:
-Adjoining an element to a set
-Union of two sets
Sets as binary trees:

- Intersection of two sets
-Union of two sets

What Did I Leave Out?

Sets as ordered sequences:

- Adjoining an element to a set
- Union of two sets

Sets as binary trees:

- Intersection of two sets
- Union of two sets
- Balancing a tree

What Did I Leave Out?

Sets as ordered sequences:
-Adjoining an element to a set
-Union of two sets
Sets as binary trees:

- Intersection of two sets
- Union of two sets
- Balancing a tree

That's all on homework 7!

