61A Lecture 18

Wednesday, October 16

Memoization

Memoized Tree Recursion Call to fib_tree Found in cache fib_tree(35) Distinct trees with memoization: 35 Distinct trees without memoization: 18,454,929

Announcements

- *Homework 6 is due Tuesday 10/22 @ 11:59pm
- Project 3 is due Thursday 10/24 @ 11:59pm
- •Midterm 2 is on Monday 10/28 7pm-9pm
- $^{\circ}\mathrm{Hog}$ strategy contest winners will be announced on Wednesday 10/16 in lecture

Memoization

Idea: Remember the results that have been computed before

(Demo)

Time

The Consumption of Time

Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

<pre>def count_factors(n):</pre>	Time (number of divisions)
Slow: Test each k from 1 through n.	n
Fast: Test each k from 1 to square root n. For every k, n/k is also a factor!	$\lfloor \sqrt{n} floor$
(Demo)	

The Consumption of Space

Which environment frames do we need to keep during evaluation?

Each step of evaluation has a set of **active** environments.

Values and frames in active environments consume memory.

Memory used for other values and frames can be recycled.

Active environments:

- Environments for any function calls currently being evaluated
- $\,{}^{\scriptscriptstyle \bullet}\!\,\mathsf{Parent}$ environments of functions named in active environments

(Demo)

Fibonacci Memory Consumption

Space

Fibonacci Memory Consumption

Order of Growth

Order of Growth

A method for bounding the resources used by a function by the "size" of a problem

n: size of the problem

R(n): Measurement of some resource used (time or space)

$$R(n) = \Theta(f(n))$$

means that there are positive constants k_1 and k_2 such that

$$k_1 \cdot f(n) \le R(n) \le k_2 \cdot f(n)$$

for sufficiently large values of n.

Counting Factors

Order of growth can still be used, even if we can quantify amounts exactly.

Problem: How many factors does a positive integer n have?

A factor k of n is a positive integer such that n/k is also a positive integer.

def count_factors(n)"	Time	Space	_
Slow: Test each k from 1 to n.	$\Theta(n)$	$\Theta(1)$	
Fast: Test each k from 1 to square root n. For every k, n/k is also a factor!	$\Theta(\sqrt{n})$	$\Theta(1)$	

Exponentiation

Goal: one more multiplication lets us double the problem size.

$$\begin{aligned} & \text{def exp}(\textbf{b}, \, \textbf{n}) \colon & \\ & \text{if } \textbf{n} = \textbf{0} \colon & \\ & \text{return 1} & \\ & \text{else:} & \\ & \text{return b * exp}(\textbf{b}, \, \textbf{n}-1) \end{aligned} \qquad \qquad b^n = \begin{cases} 1 & \text{if } n = 0 \\ b \cdot b^{n-1} & \text{otherwise} \end{cases}$$

$$\\ & \text{def square}(\textbf{x}) \colon & \\ & \text{return x*x} & \\ & \text{def fast_exp}(\textbf{b}, \, \textbf{n}) \colon & \\ & \text{if } n = \textbf{0} \\ & \text{return 1} & \\ & \text{return 1} & \\ & \text{elif } n \times 2 = \textbf{e} \colon & \\ & \text{return square}(\text{fast_exp}(\textbf{b}, \, \textbf{n}//2)) \\ & \text{else:} & \\ & \text{return b * fast_exp}(\textbf{b}, \, \textbf{n}-1) \end{cases}$$

Iteration vs Memoized Tree Recursion

Iterative and memoized implementations are not the same.

Exponentiation

Exponentiation

Goal: one more multiplication lets us double the problem size.

```
\frac{\text{fime}}{\text{charge}} \sum_{\substack{n=0 \\ \text{for exturn 1} \\ \text{else:} \\ \text{return b * exp(b, n-1)}}} \Theta(n) \qquad \Theta(n)
\frac{\text{def square(x):}}{\text{return x*x}}
\frac{\text{def fast_exp(b, n):}}{\text{if } n = 0:} \qquad \Theta(\log n) \qquad \Theta(\log n)
\frac{\text{return 1}}{\text{return 1}}
\frac{\text{elf in } \% 2 = 0:}{\text{return square(fast_exp(b, n/2))}}
\frac{\text{else:}}{\text{return b * fast_exp(b, n-1)}}
```

Comparing Orders of Growth

Comparing orders of growth (n is the problem size)

$\Theta(b^n)$	Exponential growth! Recursive fib takes
	$\Theta(\phi^n)$ steps, where $\phi=\frac{1+\sqrt{5}}{2}\approx 1.61828$ Incrementing the problem scales R(n) by a factor.
$\Theta(n^6)$	Incrementing the problem scales R(n) by a factor.
$\Theta(n^2)$	Quadratic growth. E.g., operations on all pairs.
	Incrementing n increases R(n) by the problem size n.
$_{-}\Theta(n)$	Linear growth. Resources scale with the problem.
$\Theta(\log n)$	Logarithmic growth. These processes scale well.
	Doubling the problem only increments R(n).
$\Theta(1)$	Constant. The problem size doesn't matter.