Announcements
-Homework 6 is due Tuesday $10 / 22$ @ $11: 59$ pm
-Project 3 is due Thursday 10/24@ 11:59pm
-Midterm 2 is on Monday 10/28 7pm-9pm

- Hog strategy contest winners will be announced on Wednesday 10/16 in lecture

Memoization

Idea: Remember the results that have been computed before

$$
\begin{aligned}
& \text { def memo }(f): \quad\left\{\begin{array}{l}
\text { Keys are arguments that } \\
\text { map to return values }
\end{array}\right. \\
& \text { cache }=\{ \} \quad\left\{\begin{array}{l}
\text { men }
\end{array}\right.
\end{aligned}
$$

$$
\text { def memoized }(n) \text { : }
$$

$$
\text { if } n \text { not in cache }
$$

$$
\text { cache }[n]=f(n)
$$

return cache [n]

$$
\text { return memoized } \begin{aligned}
& \text { Same behavior as } f \text {, }
\end{aligned}
$$

if f is a pure function

(Demo)

The Consumption of Time
Implementations of the same functional abstraction can require different amounts of time to compute their result.

Problem: How many factors does a positive integer n have?
A factor k of n is a positive integer such that n / k is also a positive integer.
def count_factors(n):
Time (number of divisions)

Slow: Test each k from 1 through n.
n
Fast: Test each k from 1 to square root n. For every $k, n / k$ is also a factor!
$\lfloor\sqrt{n}\rfloor$
(Demo)

The Consumption of Space
Which environment frames do we need to keep during evaluation?
Each step of evaluation has a set of active environments.
Values and frames in active environments consume memory.
Memory used for other values and frames can be recycled.

Active environments:

- Environments for any function calls currently being evaluated
- Parent environments of functions named in active environments
(Demo)

Fibonacci Memory Consumption

Fibonacci Memory Consumption

Order of Growth
A method for bounding the resources used by a function by the "size" of a problem
\boldsymbol{n} : size of the problem
$\boldsymbol{R}(\boldsymbol{n})$: Measurement of some resource used (time or space)

$$
R(n)=\Theta(f(n))
$$

means that there are positive constants k_{1} and k_{2} such that

$$
k_{1} \cdot f(n) \leq R(n) \leq k_{2} \cdot f(n)
$$

for sufficiently large values of \boldsymbol{n}.

Counting Factors
Order of growth can still be used, even if we can quantify amounts exactly.
Problem: How many factors does a positive integer n have?
A factor k of n is a positive integer such that n / k is also a positive integer

def count_factors(n)"	Time	Space
: Test each k from 1 to n.	$\Theta(n)$	$\Theta(1)$
Fast:Test each k from 1 to square root n. For every k, n/k is also a factor!	$\Theta(\sqrt{n})$	$\Theta(1)$

Exponentiation
Goal: one more multiplication lets us double the problem size.
def $\begin{array}{r}\exp (b, n): \\ \text { if } n==0:\end{array}$
return 1
return $b * \exp (b, n-1)$
def $\begin{aligned} & \text { square }(x): ~ \\ & \text { return } x^{*} x\end{aligned}$
def fast_exp(b, n) elf $\begin{array}{rl}\text { return } \\ n \% & 1 \\ 2\end{array}$ return square(fast_exp(b, n//2)
else: \quad return b * fast_exp(b, $n-1)$

Iteration vs Memoized Tree Recursion
Iterative and memoized implementations are not the same.

Comparing orders of growth (n is the problem size)

